

Grade 9

A case study

A student from the US

He has been studying with us for almost three years now.

The beginning

- He already had good grades in his studies.
- He was already very busy with extra classes and extracurricular activities, which was a red flag for us.
- We reluctantly agreed to induct him into our program.

All the screenshots of the activities are taken from work done by the student in the last two years.

No other work from his batch has been included in this document.

We started with basic concepts and are dealing now with advanced topics taught in senior classes.

The snapshots may seem a bit advanced for his grade. We started with his grade and built his conceptual competence to bring him to this level. We do this with all our students. The other students in his batch have shown similar performance.

The start

- He joined a batch of six students.
- Three have dropped out since then.
- We run three one-hour sessions per week.

The story of three years

A summary of the activities the student has done in the last three years since he joined us.

Having taught him and his batch calculus, vectors, geometry, probability, abstract algebra, and statistics, we are now teaching them AI/ML in Python this summer. He is going into grade 10 this year!

They are already very good Python programmers, like all our other students.

Partial snapshot of his online folder

All students have their individual online folder of activities that includes programming as well as non-programming activities.

The recordings and notes of sessions are stored separately and made accessible to the students.

□ 0 ▼ ■/ Sritej	□ 0 ▼ In Srite Programming	□ 0 ▼ In / Sritej / English	□ 0 ▼ ■ / Sritej / Chemistry
□	□	□	<u> </u>
☐ □ Programming	☐	■ BookManager Engineer Song.ipynb	☐
☐ ☐ English	☐	VocabularyManager for Lyrics.ipynb	☐ ■ Periodic Table.ipynb
☐ ☐ Mathematics	☐	■ Learning Spanish.ipynb	☐
☐ ☐ History	☐ ☐ Linspace.ipynb	LearnLanguageManager.ipynb	☐
☐ □ Plotting	□	■ BookManager Cinderella.ipynb	☐ ☐ Grade9ChemistryManager.ipynb
☐ ☐ HTML Programming	☐	■ BookManager Anna-Karenina.ipynb	☐ ② AtomManager.ipynb
☐ ☐ Biology	☐ □ Python	■ WordManager.ipynb	☐
☐ Chemistry	☐ ☐ JavaScript	□ ■ Spelling Manager.ipynb	☐
☐ ☐ Geography	☐ ■ String Formatting.ipynb	□ ■ Untitled.ipynb	☐
☐ □ Physics	☐ ■ Functions.ipynb	■ EnglishComprehensionManager.ipynb	☐ 🗐 PtableUtil invnb
	☐ ■ Solar_System.ipynb	☐ ■ UsageManager.ipynb	
	■ Search_Text_In_txt_File.ipynb	■ Word Scrambler.ipynb	
	□ students.csv	□	

□ 0 ▼ ■ / Sritej / Plotting	□ 0 ▼ ■ / Sritej / Mathematics	□ 0 ▼ ■ / Sritej / English	
D	□		□ 0 ▼ ► / Sritej / Programming
	☐ ■ Trigonometry.ipynb	— <u> </u>	□
☐	- Ingonometry.ipynib	BookManager Engineer Song.ipynb	☐ ☐ Input
☐	☐ ■ Sin and Cos.ipynb	VocabularyManager for Lyrics.ipynb	
Evolution of species.ipynb	■ Mio First Program.ipynb		☐ □ Output
Evolution of species diagraph.ipynb	☐ ■ Math's and Plotting.ipynb	Learning Spanish.ipynb	Python Basics.ipynb
☐ ■ Interesting Patterns.ipynb		— 🔲 <section-header></section-header>	☐
	☐ ■ InequalityGridManager.ipynb	BookManager Cinderella.ipynb	
☐	☐ 🗐 LogarithmManager.ipynb		☐ ■ How to Find Folders.ipynb
☐ ■ DecodingXyGraphManager.ipynb	■ BasicPlottingManagerPractice.ipynb	BookManager Anna-Karenina.ipynb	Reading a URL.ipynb
☐ ■ Plotting2DManager.ipynb		— MordManager.ipynb	Reading an HTML Table.ipynb
□ □ out	☐ ■ LawOfProportionManager.ipynb	Spelling Manager.ipynb	
☐ ■ Drawing a Carrom Board.ipynb	☐ ■ SingleVariableManager.ipynb		Read and Write Files.ipynb
□ ■ Drawing a Badminton Court and its Calculations	, 🔲 🛢 PolynomialManager.ipynb	Untitled.ipynb	☐ ■ Read_and_Write_csvFiles.ipynb
□ 0 ▼ ■/ Sritej / History		 EnglishComprehensionManager.ipynb 	■ Search_Text_In_txt_File.ipynb
b	☐ ■ Building A Dream House.ipynb	UsageManager.ipynb	□ □ students.csv
□	PowerManager.ipynb	— ☐ ■ Word Scrambler.ipynb	
Ancient_Egypt.HTML.ipynb	□ ■ AdvancedPowerManager invnh		☐ ■ Solar_System.ipynb
☐ Ancient_Egypt.html		VocabularyManager.ipynb	□ ■ Functions involv
☐ ■ History about Ashoka.ipynb			

Cold War.ipynb

Ukraine and Russia.ipynb

Vikings History (Got Trolled Actual

☐ ■ History of French Revolution.ipynb

Partial snapshot of the notes folder of his batch

atomic-forces.png

calculus-differentiation.png

year-2022-July-Dec

denistry-1.png

8 year-2021-July-Dec

demistry-2.png

year-2023-Jan-June

dichemistry-3.png

year-2023-Jul-Dec

Nyear-2024-Jan-June

denistry-4.png

demistry-5.png

demistry-6.png

chemistry-7.png

demistry-8.png

denistry-9.png

demistry-10.png

demistry-11.png

demistry-12.png

demistry-13.png

demistry-14.png

demistry-15.png

wave equation.png

volume-area.png

some-more-binomail-expr.png

SAT-practice.png

🛃 sat-aug-29.png

real-analysis.png

ratio-of-force-between-electorons.p

quadratic-equations.png

probability-iit.png

physics-new-session.png

newton's laws_2.png

newton's laws.png

new-series-waves-particles-electron

new-series-waves-particle-heat-tran

matter-state-and-heat.png

math-revision.png

math-geniuscerebrum.png

induction.png

🖪 iit-area.png

hydraulic-pump.png

hiya-motion.png

glucose.png

geo-rotation.png

geometry-deriving-equations.png

gavitational-force.png

force-of-gravity.png

difference of buoyancy.png

factorize-3.png

factorize-2.png

A factorize-1.png

euler-topics.png

diffential-equations.png

dicricket-world.cup.png

conic-sections.png

factorize-2.png

factorize-1.png

euler-topics.png

diffential-equations.png

dicricket-world.cup.png

conic-sections.png

alculus-kinetics-2.png

alculus-kinetics.png

diack-holes.png

aops-2022-q-25.png

aops-2022-q.png

aops.png

algebra-polynomials.png

algebra-2-reviews-4.png

algebra-2-reviews-3.png

algebra-2-reviews-2.png

algebra-2-review-5.png

- waves.png
- volume-sphere.png
- volume-cone-2.png
- volume-cone.png
- volume-area.png
- vector-speed-distance.png
- ditrig-root.png
- trigonometry.png
- time-travel.png
- 🛃 stats-average-vs-median.png
- stats.png
- potential-calculus.png
- polygon.png
- physic-vector.png
- periodic-table-trend.png
- dics-similar-triangle.png
- optics3.png

- maths-polygon.png
- latent-heat-2.png
- latent-heat.png
- iit-q.png
- history-of-usa-topics.png
- geometry-sritej.png
- geometry-revision.png
- geometry-figures_3.png
- geometry-figures_2.png
- geometry-figures.png
- geometry-3d.png
- geometr-overview-2.png
- geometr-overview.png
- gas-laws.png
- field-and-potential-multiple-charges.
- dield-and-potential.png
- factorization.png

- delectricit-and-magnets.png
- electricit.png
- dynamics-calculus.png
- discoordinates-median.png
- discoord-geom-euler-number.png
- di coord-geom.png
- dircuits.png
- dental chemistry-bonds.png
- denistry-review-and-colors.png
- de chemistry-mole-acide-base.png
- demistry-bonds.png
- denistry-acid-base-salt.png
- demistry.png
- a calculus-velocity-acceleration.png
- alculus-velocity.png
- 🗟 calculus-area-volume-length-of-revolu
- calculus-area-circle.png

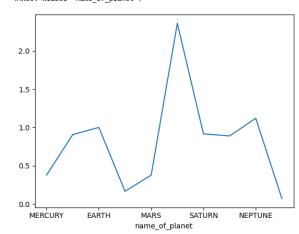
- work-torque.png
- Mork-energy-friction.png
- waves.png
- venus.png
- delication | National | National
- vector-distance.png
- trig-overview.png
- trigonometry-graph.png
- trig-fromulae.png
- trig-calc.png
- triangle-sides.png
- radio-decay.png
- puzzles.png
- projectile.png
- pos-value-coord.png
- mechanics.png
- lines and ratios.png

- mechanics.png
- lines and ratios.png
- history.png
- gravitation-wormholes.png
- field-and-forces.png
- euler-number.png
- energy-waves.png
- discurved-vs-plain-surfaces.png
- discongruency.png
- dence.png chemistry-valence.png
- discolor in the state of the st
- Binomial-calculus.png
- atomic-model.png
- area.png
- architecture-racism.png
- aops-q-25-2021.png
- aops-q-24-23-22-2021.png

- xn-permutation-probability.png
- xn-permutation.png
- xnmanager.png
- work-vector-3.png
- work-vector_2.png
- work-vector.png
- work-calculation.png
- vector-triangle.png
- vectors-defs.png
- vector-area.png
- speed-time.png
- spectrum-and-colors.png
- slicing-shapes.png
- similar-triangles.png
- russia-ukraine.png
- russian-revolution.png
- quadratic_equation_and_roots_derivati

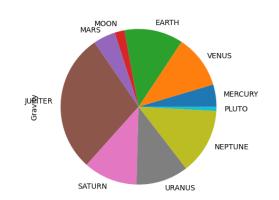
- duadratic_equation_and_roots.png
- duadratic_equation.png
- prob-mar-10.png
- physics-math-force-vector-gravitation.p
- number-systems.png
- mechanics-work-force.png
- matrix-atoms.png
- matrix.png
- Inear-angular-motions.png
- kinetic_energy.png
- ke-pe.png
- [3] jan04-2022-questions-waves-hiltler.png
- integrated-learning-xn.png
- infinity-large-numbers-2.png
- how-volume-works.png
- heat-specific-latent.png
- god-religion.png

- atoms-mole-structure.png
- alculus-derive-xn.png
- dircle-and-angles.png
- dircle-and-angles-2.png
- dircle-and-its-parts.png
- combination.png
- desktop.ini
- electronic-config.png
- electronic-structure.png
- force-displacement-work.png
- geometry-walking.png
- infinity-large-numbers.png
- Inear-equations-rohan.png


He, like all our students, is also a good programmer because it helps them learn Math, Physics, Chemistry, Geography, and other subjects better and faster.

He knows Python (including pandas, numpy, and sympy), JavaScript, HTML, CSS, and SVG.

He is familiar with Java and OOP. It was never our objective to turn him into a professional programmer. Yet, he is only one month away from being good enough to work as a professional software programmer.


```
1 import pandas as pd
1 webpage = "https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html"
2 webpage
'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html'
1 tables = pd.read_html(webpage, header = θ)
2 tables
                                                                MARS
                Unnamed: 0 MERCURY
                                       VENUS
                                             EARTH
                                                         MOON
                                                                       JUPITER
                                       0.815
                                                       0.0123
                                                               0.107
                                                                         317.8
                  Diameter
                              0.383
                                      0.949
                                                       0.2724
                                                               0.532
                                                                         11.21
                   Density
                              0.985
                                      0.951
                                                        0.606 0.714
                                                                         0.241
1 t.index
RangeIndex(start=0, stop=19, step=1)
1 t.columns
Index(['Unnamed: 0', 'MERCURY', 'VENUS', 'EARTH', 'MOON', 'MARS', 'JUPITER',
       'SATURN', 'URANUS', 'NEPTUNE', 'PLUTO'],
      dtype='object')
 1 t.rename(columns = {'Unnamed: 0':'PROPERTIES'}, inplace = True)
  1 t = t.set_index('PROPERTIES')
  2 t
                    MERCURY VENUS EARTH
                                           MOON MARS
                                                        JUPITER
                                                                  SATURN
                                                                          URANUS
                                                                                  NEPTUNE
                                                                                            PLUTO
         PROPERTIES
              Mass
                      0.0553 0.815
                                       1 0.0123 0.107
                                                           317.8
                                                                    95.2
                                                                             14.5
                                                                                      17.1
                                                                                            0.0022
                       0.383
                                                                             4.01
                                                                                             0.187
           Diameter
                            0.949
                                       1 0 2724 0 532
                                                           11 21
                                                                    9.45
                                                                                      3.88
  1 t.Gravity.astype(float).plot()
```

<Axes: xlabel='name of planet'>

1 t.Gravity.astype(float).plot.pie()

<Axes: ylabel='Gravity'>


```
plt.figure(figsize = [20,10])
word_cloud = WordCloud(
width = 800,
    height = 500,
    background_color = 'white').generate_from_frequencies(frequencies)

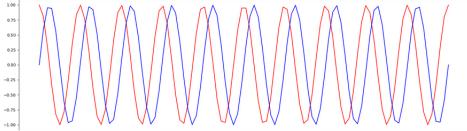
plt.mshow(word_cloud, interpolation = 'bilinear')
plt.axis("off")

plt.show()
```

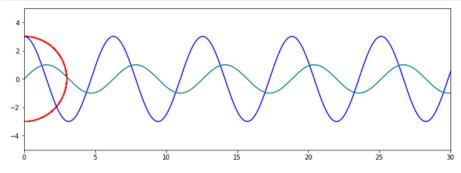


```
figure(figsize=(20, 6), dpi=80)

#theta = np.linspace(0 * np.pi, 10 * np.pi, 100)


t = np.linspace(0, 1, 100)

f = 10


w = 2 * np.pi * f

theta = w * t

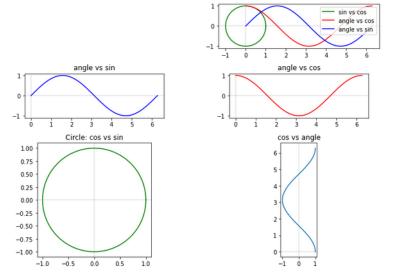
y 1 = np.cos(theta)
11 y2 = np.sin(theta)
12
13 plt.plot(theta, y1, color = 'red')
plt.plot(theta, y2, color = 'blue')
15 plt.show()
```

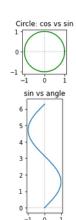


```
1 plt.figure(figsize = (12, 6))
2
3 t = linspace(0, 5, 1000)
4 f = 2
 5 w = 2 * pi * f
 6 angles = w * t
 7 r = 3 \#It is called amplitude of the wave
9 plt.plot(r * cos(angles), r * sin(angles), color = 'red')
10
plt.plot(angles, r * cos(angles), color = 'blue')
plt.plot(angles, sin(angles), color = 'teal')
13
14 plt.xlim(0, 30)
15 plt.ylim(-5, 5)
16 plt.gca().set_aspect('equal', adjustable='box')
17 plt.show()
```



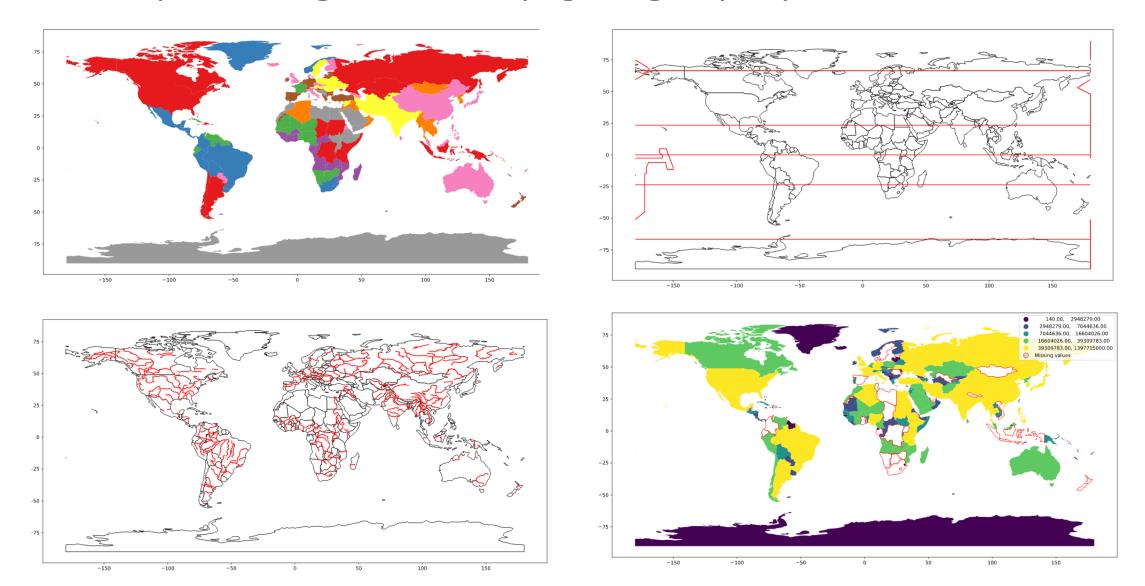
```
65 ax.axvline(x = 0, color = (0, 0, 0, .1))

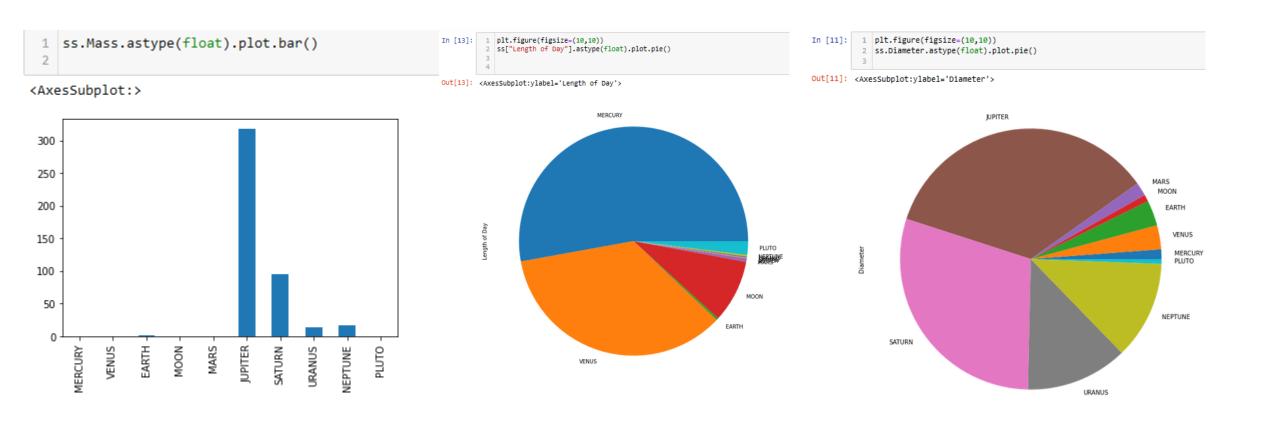

66 ax.axhline(y = 0, color = (0, 0, 0, .1))


67 ax.legend()

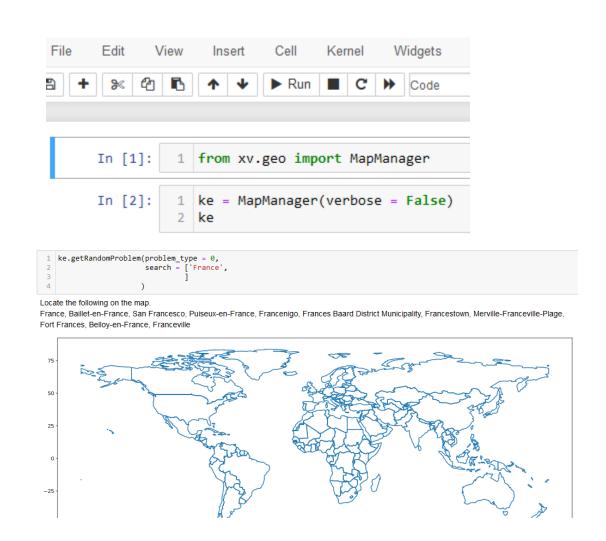
68

69 fig.tight_layout()


70 plt.show()
```

Geoplotting to study geography


He is good at data refining, visualization, and analysis

Geoplotting

- Plotting countries, continents, rivers, and other landscapes
- Locating and identifying things on maps
- Analyzing and predicting about places and verifying whether their analytical conclusions are right or not.

'Managers' are our modern form of books and question banks

All managers can generate an unlimited number of non-repetitive questions based on a set of concepts.

The managers shown in this document are only those which were done by this student. He used a large number of managers, but only a few are presented in this document.

Each manager contains a large number of problem types. This document shows it for a few managers. In other cases, random sample problems have been shown.

Managers from math.

```
In [1]:
          1 from xv.math.algebra import AlgebricExpressionManager
In [2]:
          1 ke = AlgebricExpressionManager()
In [3]:
             ke.printProblemTypes()
```

- 0. problem add
- 1. problem add advanced
- 2. problem subtract
- 3. problem subtract advanced
- 4. problem multiple subtracts
- 5. problem multiply
- 6. _problem_multiply_advanced
- 7. problem divide
- 8. problem divide advanced 1
- 9. _problem_divide_advanced_2
- 10. _problem_divide_advanced_3
- 11. _problem_division_with_zero
- 12. _problem_power_with_zero
- 13. problem abs values

```
Fronteil relibrace. Thronteil
Find the absolute value of
if x < 0, y >= 0
Answer:
y-x
Solution:
abs(x-y)
= |x - y|
Let x = -8, and y = 5
= |(-8) - (5)|
= |-13|
= 13
Hence,
|x-y|=y-x
                    See r
Note:
```

Find the absolute value of if
$$x < 0$$
, $y >= 0$

Answer:
$$y - x$$

Solution:
$$abs (x - y)$$

$$= |x - y|$$
Let $x = -8$, and $y = 5$

$$= |(-8) - (5)|$$

$$= |-13|$$

$$= 13$$
Hence,
$$|x - y| = y - x$$
See $x + y = -3$

$$x - y = -13$$

$$y - x = 13$$

$$-(x + y) = 3$$

Answer:
$$-5v + 8x + 2z$$

$$-9v - w + x - 2y + 6z$$

The coefficients of variables v , w , x , y , z are:
$$\begin{bmatrix} v & w & x & y & z \\ -5 & 0 & 8 & 0 & 2 \\ -9 & -1 & 1 & -2 & 6 \end{bmatrix}$$

As We have to subtract second expression from the expression of the expre

We can rewrite

$$\sqrt[3]{261} = \sqrt[3]{(216 + 45)}$$

where x = 216 an

 $f(\Delta x + x) = \text{(Value of function)} + \text{(Rate of ch})$

$$= f(x) + \left(\frac{d}{dx}f(x)\right) \cdot \Delta x$$

$$= f(x) + \left(\frac{d}{dx}\sqrt[3]{x}\right) \cdot \Delta x$$

$$= f(x) + \left(\frac{1}{3x^{\frac{2}{3}}}\right) \cdot \Delta x$$

$$= \sqrt[3]{216} + \left(\frac{216^{-\frac{2}{3}}}{3}\right) \cdot (45)$$

$$=6+\frac{5}{12}$$

$$=\frac{77}{12}$$
 actual value is $\sqrt[3]{261}$

Solve
$$\frac{(4 - 3)}{6 \times 8 + \frac{(9 - 5)}{(\frac{5}{3}) + (5 \times 4)} \times (6 - 2)}$$

Answer: 1485

31552

Solution:

$$\frac{(4 - -5)}{6 \times 8 + \frac{(9 - 5)}{\left(\frac{5}{-8}\right) + (5 \times -4)} \times (6 - 2)}$$

$$= \frac{9}{6 \times 8 + \frac{(9-5)}{\left(\frac{5}{-8}\right) + (5\times -4)} \times (6-2)}$$
 as $(4--5)$

$$= \frac{9}{4 \times 6 \times 8 + \frac{5}{\left(\frac{5}{-8}\right) + (5 \times -4)}}$$
 as $(6-2) =$

Find relation between a, v(s) and s

where:

a = acceleration

v(s) = velocity

s = displacement

t = time

Answer:

$$v^2(s) = 2as + v^2(0)$$

Solution:

First Part:

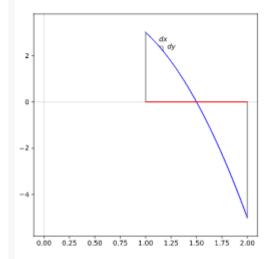
$$a = \frac{d}{dt}v(s)$$

$$\implies a = \frac{d}{ds}v(s)\frac{d}{dt}s$$

$$\implies a = v(s) \frac{d}{ds} v(s)$$

$$\implies \int_{0}^{s} a \, ds = \int_{0}^{s} v(s) \frac{d}{ds} v(s) \, ds$$

$$\implies as = -\frac{v^2(0)}{2} + \frac{v^2(s)}{2}$$


$$\implies 2as = -v^2(0) + v^2(s)$$

Second Part:

$$a = v(s) \frac{d}{ds} v(s)$$

Find length of the curve $f(x) = -4x^2 + 4x + 3$ between x = 1 and x = 2.

$$-\frac{\sqrt{17}}{4} - \frac{a\sinh{(4)}}{16} + \frac{a\sinh{(12)}}{16} + \frac{3\sqrt{145}}{4}$$

$$dL = \sqrt{dx^2 + dy^2}$$

$$= \sqrt{df(x)^2 + dx^2}$$

$$= \sqrt{\left(\frac{d}{dx}f(x)\right)^2 + 1} dx$$

$$\Rightarrow L = \int_{1}^{2} \sqrt{\left(\frac{d}{dx}f(x)\right)^{2} + 1} dx$$

$$= \int_{-\infty}^{2} \sqrt{\left(\frac{d}{dx}(-4x^2+4x+3)\right)^2+1} \, dx$$

Find surface area of the the cone whose base has radius 1 and height 3.

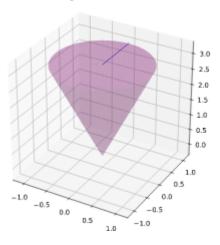
$$\pi \left(1 + \sqrt{10}\right)$$

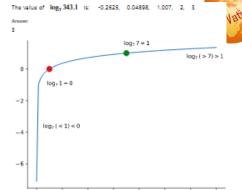
A cone has one dircular base and slant surface area

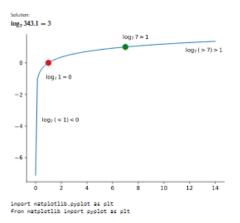
- area of circular base + slant surface area

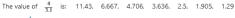
-
$$xr^2 + xrI$$

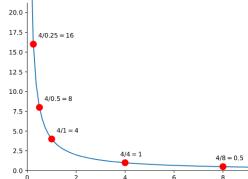
where I is slant length and is equal to $\sqrt{k^2 + r^2} = \sqrt{\left(1^2 + 3^2\right)} = \sqrt{10}$


 $-\pi r(r+1)$

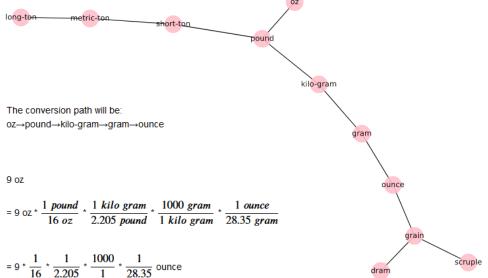

$$-x+1(1+\sqrt{10})$$


$$-x+1(1+\sqrt{10})$$


$$-x(1+\sqrt{10})$$


Cone (radius: 1, length: 3, center: (0, 0, 0), theta: 2n)

1.29


Answer:

1 ke.getRandomProblem(problem_type= 18)	<pre>1 ke.getRandomProblem(problem_type = 19)</pre>
Simplify the followings:	Prove that
	$\frac{2}{5} < \log_{10} 3 < \frac{1}{2}$
$\frac{8.0+0.4}{40.0} * \frac{1}{6.0}$	5 \ 10510 5 \ 2
40.0 6.0	
1 ke.printAnswer()	1 ke.printAnswer()
7	
7 200 or	$\frac{2}{5} < \log_{10} 3 < \frac{1}{2}$
0.025	
0.035	1
4	2 3 ke.printSolution()
1 ke.printSolution()	4
$\frac{8.0 + 0.4}{40.0} * \frac{1}{6.0}$	$\log_{10} 3 ? \frac{2}{5}$ $\Rightarrow 3 ? 10^{\frac{2}{5}}$ $\Rightarrow 3^{5} > 10^{2},$
	$\Rightarrow 3 ? 10^{\frac{2}{5}}$
$=\frac{8.4}{40.0}*\frac{1}{6}$	$\Rightarrow 3^5 > 10^2$
-	, , , , , , , , , , , , , , , , , , , ,
$=\frac{\frac{42}{5}}{40}*\frac{1}{6}$	Now $\log_{10} 3$? $\frac{1}{2}$
$=\frac{42*1}{40*5}*\frac{1}{6}$	\Rightarrow 3 ? $10^{\frac{1}{2}}$
42 - 1 - 1	\Rightarrow 3 ² < 10, which is true
$= \frac{42 * 1 * 1}{40 * 5 * 6}$	2
$=\frac{42}{1200}$	Hence $\frac{2}{5} < \log_{10} 3 < \frac{1}{2}$
$=\frac{7}{200}$	
Write arithmetic series of \mathbf{z}^6 terms, with first term (t_0) as	s $\sqrt[q]{x}$ and the common difference as $-y$
Answer: $\left(\left(\sqrt[q]{x}\right) + (-y) \cdot 0\right) + \left(\left(\sqrt[q]{x}\right) + (-y) \cdot 1\right) + \left(\sqrt[q]{x}\right) + \left(\sqrt[q$	(x^6) + $(-y) \cdot 2$ + \cdots + $((\sqrt[6]{x})$ + $(-y) \cdot (z^6 - 2))$ + $((\sqrt[6]{x})$ + $(-y) \cdot (z^6 - 1))$
It can also be written as $\sum_{k=0}^{z^6-1} \left(\left(\sqrt[q]{x} \right) + (-y) \cdot k \right)$	
Solution:	
next term = (previous term) + (common difference	c)
$t_n = t_0 + n *$ common difference	
Please note that we start count of terms from 0.	
$t_0 = \sqrt[9]{x} = \left(\left(\sqrt[9]{x} \right) + (-y) \cdot 0 \right)$	
$t_1 = t_0 + (-y) = ((\sqrt[9]{x}) + (-y) \cdot 0) + (-y) = (($	
$t_2 = t_1 + (-y) = ((\sqrt[9]{x}) + (-y) \cdot 1) + (-y) = (($	$\sqrt[q]{x}$ + $(-y) \cdot 2$

$t_{z^6-1} = t_{z^6-2} + (-y) = \left(\left(\sqrt[6]{x} \right) + (-y) \cdot \left(z^6 - 2 \right) \right)$	$+\left(-y\right) =\left(\left(\sqrt[6]{x}\right) +\left(-y\right) \cdot \left(z^{6}-1\right) \right)$
$t_{z^6} = t_{z^6-1} + (-y) = ((\sqrt[6]{x}) + (-y) \cdot (z^6 - 1)) +$	$\cdot (-y) = \left(\left(\sqrt[6]{x} \right) + (-y) \cdot \left(x^6 \right) \right)$
Therefore, the series is $\left(\left(\sqrt[q]{x}\right)+\left(-y\right)\cdot 0\right)+\left(\left(\sqrt[q]{x}\right)+\left(-y\right)\cdot 1\right)+\left(\left(\sqrt[q]{x}\right)+\left(-y\right)\cdot 1\right)$	$(z^6 - y) + (-y) \cdot 2 + \dots + ((\sqrt[6]{x}) + (-y) \cdot (z^6 - 2)) + ((\sqrt[6]{x}) + (-y) \cdot (z^6 - 1))$
= x * *(1/9) + x * *(1/9) - y + x * *(1/9) - 2 * y	$y + \cdots + x * *(1/9) - y * (z * *6 - 2) + x * *(1/9) - y * (z * *6 - 1)$
It can also be written as $\sum_{k=0}^{2^6-1} \left(\left(\sqrt[6]{x} \right) + (-y) \cdot k \right)$	

Solve the followings: Q2. --9Q3. 9 * 9 **Q4.** -9*9**Q5**. 9 * -9 Q6. -9 * -9 Q7. --9*9**Q8.** 9*--9**Q9.** --9*--9**Q10.** -9*--9**Q11.** --9*-9

Solution 28. $(-2)/(-10) = \frac{1}{5}$ Solution 29. $10^2 = 100$ Solution 30. $2^{10} = 1024$ Solution 31. $10^{-2} = \frac{1}{100}$ Solution 32. 2⁻¹⁰ = Solution 33. $(-10)^2 = -100$ Solution 34. $(-2)^{10} = -1024$ Solution 35. $(-10)^{-2} = -\frac{1}{100}$ Solution 36. $(-2)^{-10} = -\frac{1}{1024}$ Solution 37. $log_210 = \frac{10}{3}$ Solution 38. $log_{10}2 = \frac{5}{10}$

1 from xv.math.basicmaths import NumberUnitManager 1 ke = NumberUnitManager() 1 ke.getRandomProblem(problem type = 4) Convert 9 oz to ounce. Note: You may use the following table: 1 ounce = 28.35 gram 1 pound = 16 oz 1 kilo-gram = 2.205 pound1 pound = 0.0005 short-ton 1 metric-ton = 1.12 short-ton 1 long-ton = 1.016 metric-ton 1 grain = 0.05 scruple 1 grain = 0.01667 dram1 grain = 0.00208 ounce 1 kilo-gram = 1000 gram metric-ton_

= 9 * 0.9998120353373564 ounce

= 8.998308318036207 ounce

Form 2-letter words from letters r, k, v, g, f, u, x. The words need not be meaningful

```
1 ke.printAnswer()
```

84

```
| ke.printSolution()
```

ways of selecting 3 from 9 items

$$=\binom{9}{3}$$

$$=\frac{9!}{(9-3)! \ 3!}$$

$$=\frac{9!}{6!\ 3!}$$

$$=\frac{362880}{720*6}$$

= 84

```
1 ke.getRandomProblem(problem_type= 2)
```

Find the ratio of numbers 0.014, 0.031 and 0.58

```
1 ke.printAnswer()
```

14:31:580

The greatest common divisor (GCD) of the numbers 27, 12 and 3 = 1

To get ratio, we have to divide the numbers by the GCD.

Ratio of numbers 27, 12 and 3

$$=\frac{27}{3}:\frac{12}{3}:\frac{3}{3}$$

= 9:4:1

ke.printSolution()

Numbers:

$$\frac{1}{2}$$
, $-\frac{2}{7}$, $\frac{6}{1}$, $\frac{1}{1}$, $\frac{1}{2}$, $-\frac{2}{1}$

Common Denominators:

Let us make all denominators equal to their LCM = 14

$$= \frac{1*7}{2*7}, -\frac{2*2}{7*2}, \frac{6*14}{1*14}, \frac{1*14}{1*14}, \frac{1*7}{2*7}, -\frac{2*14}{1*14}$$
$$= \frac{7}{14}, -\frac{4}{14}, \frac{84}{14}, \frac{14}{14}, \frac{7}{14}, -\frac{28}{14}$$

Sum:

Average:

As we have common denor

$$= \frac{80}{14}$$

$$= \frac{80 / 2}{14 / 2}$$

$$= \frac{40}{7}$$

$$=\frac{40}{7}$$

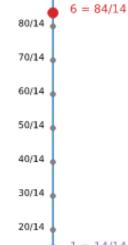
Sorted Numbers:

$$\begin{aligned} &-\frac{28}{14}, -\frac{4}{14}, \frac{7}{14}, \frac{7}{14}, \frac{14}{14}, \frac{84}{14} \\ &= -\frac{2}{1}, -\frac{2}{7}, \frac{1}{2}, \frac{1}{2}, \frac{1}{1}, \frac{6}{1} \end{aligned}$$

Median:

The number of fractions is 6, an even number.

The middle term is,
$$\frac{6+1}{2} = \frac{7}{2}$$
th term.


Hence, the median will be average of 3rd and 4th terms.

Median

$$=\frac{\frac{1}{2} + \frac{1}{2}}{2}$$

$$=\frac{1}{2}$$

$$=\frac{1}{2}$$

10/14

0/14

-10/14

-20/14

-30/14

-40/14

-50/14

100/14

90/14

1 ke.getRandomProblem(problem_type = 7)

cost of maintaining each tree is \$0.5. Answer the following questions:

Marium has 7 farm. Each farm has 2 garden. Each garden has 60 tree. Each tree has 10 fruit

1. What is the total number of farm?

2. What is the total number of garden?

3. What is the total number of tree?

4. What is the total number of fruit?

5. What is the total number of box'

6. What is the total sales value?

7. What is the total cost?

8. What is the net profit?

1 ke.printSolution()

The equation of the question are as follows:

1 Mary = 8 garden

1 garden = 20 tree

1 tree = 20 fruit

 $1 \text{ fruit} = \frac{1}{12} \text{ box}$

1 box = \$800/3[sell price]

1 garden = \$200[cost price]

Let us do calculations:

Total sales revenue

= 8 garden

 $= 8 \text{ garden} * \frac{20 \text{ tree}}{\text{earden}}$

 $= 8 \text{ garden} * \frac{20 \text{ tree}}{\text{garden}} * \frac{20 \text{ fruit}}{\text{tree}}$

So, 3200 fruit

 $= 8 \text{ garden} * \frac{20 \text{ tree}}{\text{garden}} * \frac{20 \text{ fruit}}{\text{tree}} * \frac{box}{12 \text{ fruit}}$

 $= 8 \text{ garden} * \frac{20 \text{ tree}}{\text{earden}} * \frac{20 \text{ fruit}}{\text{tree}} * \frac{box}{12 \text{ fruit}} * \frac{88}{box}$

 $= 8 * 20 * 20 * \frac{1}{12} * 8

5. z = 3 - 3i

= \$6400/3

modulus of $z = r = |z| = \sqrt{(3)^2 + (-3)^2} = 4.24$

argument or phase of $z = \phi(z) = tan^{-1} \left(\frac{-3}{3}\right) = tan^{-1} \left(\frac{-3}{3}\right) = -0.785 = -45^{\circ}$

Now,

 $(3-3i)^4$

= \$1600

 $= (re^{i(2n\pi+\phi)})^4$

 $= r^4 e^{4(2n\pi + \phi)i}$

Net Profit

= Total Cost - Total Revenue = \$6400/3 - \$1600

 $4(2n\pi + \phi)$ can be solved for n = 0, 1, 2, 3, ...

= \$1600/3

The distinct values are:

 $\theta_0 = (2 * 0 * \pi + -45^\circ) * 4 = 180^\circ$

EXPUTE

 $\left(\frac{x}{3y} + xy\right)^2$

Answer:

 $= x^4 y^4 + \frac{4x^4 y^2}{3} + \frac{2x^4}{3} + \frac{4x^4}{27y^2} + \frac{x^4}{81y^4} + \cdots$

Solution:

 $\left(\frac{x}{3y} + xy\right)^4$

 $=\sum^{4}\binom{4}{k}\left(\frac{x}{3y}\right)^{4-k}(xy)^{k}$

 $= {4 \choose 0} \cdot \left(\frac{x}{3y}\right)^4 \cdot (xy)^0 + {4 \choose 1} \cdot \left(\frac{x}{3y}\right)^3 \cdot (xy)^1 + {4 \choose 2} \cdot \left(\frac{x}{3y}\right)^2.$

 $=1\cdot\frac{x^4}{81v^4}\cdot 1+4\cdot\frac{x^3}{27v^3}\cdot xy+6\cdot\frac{x^2}{9v^2}\cdot x^2y^2+4\cdot\frac{x}{3y}\cdot x^3y^3+1\cdot$

 $= \frac{x^4}{81 v^4} + \frac{4 x^4}{27 v^2} + \frac{2 x^4}{3} + \frac{4 x^4 y^2}{3} + x^4 y^4 + \cdots$

So, 800/3 box = $x^4y^4 + \frac{4x^4y^2}{3} + \frac{2x^4}{3} + \frac{4x^4}{27y^2} + \frac{x^4}{81y^4} + \cdots$

TOP I IN EQUILINAPACE (0) LENGTH OT COME, NUMBER OF PLANTS): x = r * cos(theta) + r * nove_left_right y = r * sin (theta) + r * nove_up_down plt.plot(x,y)

#optional code plt.gea().set_aspect('equal') plt.axis('off') plt.show()

Write expression for arranging k items from a collection of n items

 P_k^n

Note: P_k^n is read as n permutation k.

Answer:

n(-k+n)!

Solution:

Arranging k out of n things.

As we start with n things and r places:

1. For first place, we can choose any item from n things, so we have n choices.

2. For second place, we can choose any item from remainder n-1 things, so we have n

3. For third place, we can choose any item from remainder n-2 things, so we have n-2

Thus, for kth place, the choice will be n - (k - 1) = n - k + 1

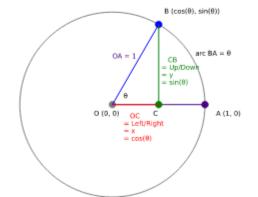
Now, all choices are dependent on each other, so will get a product to get the result.

 $\implies P_{\nu}^{n} = n(n-1)(n-2)\cdots(n-k+2)(n-k+1)$

 $\Rightarrow P_k^n = \frac{n(n-1)(n-2)\cdots(n-k+2)(n-k+1)(n-k)(n-k-1)\cdots*3}{(n-k)(n-k-1)\cdots*3*2*1}$

#elot eoint 5 plt.plot(cos(theta), sin(theta), marker = 'o', color = 'blue', marker: plt.gca().annotate(f'8 (cos(θ), sin(θ))', xy=(cos(theta) * 1.12, sin(' plt.plot((0, cos(theta)), (0, sin(theta)), color - 'blue') #plot point C plt.plot(cos(theta), 0, marker = 'o', color = 'green', markersize = 1) plt.gca().annotate(f'C', xy=(cos(theta) * .88, -0.12), xycoords='data #plot line OC

- Left/Right = c0s(0)*** plt.plot((0, cos(theta)), (0, 0), color = 'red')


plt.gca().annotate(label, xy=(+0.12, -0.39), xycoords='data', color #plot line C5 label - f'''

 Up/Down sin(θ)****

plt.plot((cos(theta), cos(theta)), (0, sin(theta)), color = 'green') plt.gca().annotate(label, xy=(cos(theta)+0.03, sin(theta)/4), xycoor-

#optional code plt.xlim(-1.2, 1.2) plt.ylim(-1.2, 1.2) plt.gca().set_aspect('equal') plt.axis('off') plt.show()

label = f'''

Find formula of $\cos (A - B)$ and $\sin (A - B)$

Answer:

$$\cos(A - B) = \sin(A)\sin(B) + \cos(A)\cos(B)$$

$$\sin(A - B) = \sin(A)\cos(B) - \sin(B)\cos(A)$$

Solution:

$$e^{i(\Lambda-B)} = e^{i\Lambda}e^{-iB}$$

$$\implies i \sin(A - B) + \cos(A - B) = (i \sin(A) + \cos(A))(-i \sin(B))$$

$$\implies i \sin(A - B) + \cos(A - B) = \sin(A) \sin(B) + i \sin(A) \cos(B)$$

Taking real terms of both sides:

$$\implies$$
 cos $(A - B) = \sin(A)\sin(B) + \cos(A)\cos(B)$

Taking imaginary terms of both sides:

$$\implies$$
 $\sin(A - B) = \sin(A)\cos(B) - \sin(B)\cos(A)$

Prove

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Answer.

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2} - \frac{i\theta^3}{6} + \frac{\theta^4}{24} + \frac{i\theta^3}{120} + O\left(\theta^6\right)$$

$$\cos\left(\theta\right) = 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24} + O\left(\theta^6\right)$$

$$\sin\left(\theta\right) = \theta - \frac{\theta^3}{6} + \frac{\theta^5}{120} + O\left(\theta^6\right)$$

$$\implies e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Solution:

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2} - \frac{i\theta^3}{6} + \frac{\theta^4}{24} + \frac{i\theta^3}{120} + O(\theta^6)$$

$$\cos\left(\theta\right) = 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24} + O\left(\theta^6\right)$$

$$\sin\left(\theta\right) = \theta - \frac{\theta^3}{6} + \frac{\theta^5}{120} + O\left(\theta^6\right)$$

$$\implies e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Find approximate value of the square root of 1030.

ke.printAnswer()

10.10

ke.printSolution()

$$(a+b)^{\frac{1}{3}} = a^{\frac{1}{3}} + \frac{1}{3}a^{\frac{1}{3}-1} \cdot b^1 + \cdots$$

$$=a^{\frac{1}{3}}+\frac{1}{3}a^{-\frac{2}{3}}\cdot b+\cdots$$

Let
$$x = a^{\frac{1}{3}}$$

$$\Rightarrow x^2 = a^{\frac{2}{3}}$$

$$\Rightarrow \frac{1}{r^2} = a^{-\frac{2}{3}}$$

$$\Rightarrow (a+b)^{\frac{1}{3}} \approx x + \frac{1}{3} \frac{1}{x^2} \cdot b$$

The closest perfect 3 power of a number is $1000 = 10^3$. Therefore,

$$1030 = 1000 + 30$$

$$\Rightarrow a = 1000$$

$$b = 30$$

$$x = 1000^{\frac{1}{3}} = 10$$

$$(1030)^{\frac{1}{3}} = (1000 + 30)^{\frac{1}{3}}$$
$$= x + \frac{1}{3} \frac{1}{x^2} \cdot b$$

$$=10+\frac{1}{3}\cdot\frac{1}{10^2}\cdot30$$

$$=10+\frac{30}{300}$$

$$= 10 + 0.1$$

$$= 10.1$$

_problem_traditional_division

1. problem divisible by multiples of 10

2. _problem_divisible_by_4_8

_problem_divisible_by_2_5

4. _problem_divisible_by_3_9

_problem_divisible_by_6

problem_divisible_by_7_13_17_19_29

7. problem divisible by 11

Is 733100 divisible by 7?

Answer:

False

Solution:

We will apply last digit reduction meth

The reduction factor for 7 is -2.

Step 1: Number = 733100

-2 times of the last digit of 733100

$$= -2 * 0 = 0$$

Remove the last digit from 733100

= 73310

Add 0 from 73310

= 73310 + 0 = 73310

Step 2: Number = 73310

-2 times of the last digit of 73310

= -2 * 0 = 0

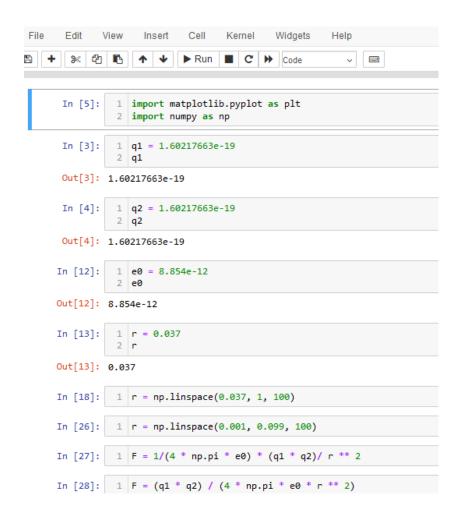
Remove the last digit from 73310

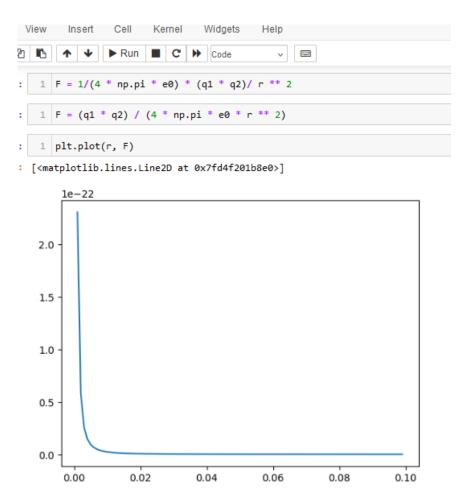
= 7331

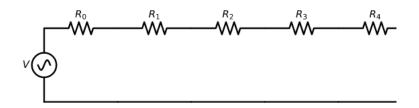
Add 0 from 7331 = 7331 + 0 = 7331

Step 3: Number = 7331

-2 times of the last digit of 7331


= -2 * 1 = -2


Remove the last digit from 7331

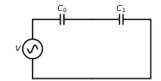


Physics is easy for him

A circuit has resistances R_0 , R_1 , R_2 , R_3 and R_4 in a series connected to a voltage source V. What

$$R_0 + R_1 + R_2 + R_3 + R_4$$

The total voltage is sum of voltages across each resistances in a series.


$$V = V_0 + V_1 + V_2 + V_3 + V_4$$

As the current through each of the resistance in a series must be same:

$$\implies IR = IR_0 + IR_1 + IR_2 + IR_3 + IR_4$$

$$\implies R = R_0 + R_1 + R_2 + R_3 + R_4$$

The capacitors with capacitances C_0 and C_1 are connected in a

Answer:
$$\left(\frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}\right) V$$

The total voltage on all capacitors connected in a series is the su

$$V = V_0 + V_1$$

As the charge on each capacitor in a series is same:

$$\Rightarrow \frac{q}{C} = \frac{q}{C_1} + \frac{q}{C_0}$$

$$\Rightarrow \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_0}$$

$$\Rightarrow C = \frac{1}{\frac{1}{C_1} + \frac{1}{C_0}}$$

$$\implies q = CV = \left(\frac{1}{\frac{1}{t_1} + \frac{1}{t_0}}\right)V$$

ors is given by

$$y(t) \cdot \hat{j} + z(t) \cdot \hat{k}$$

and acceleration $\vec{a}(t)$.

$$\vec{v}(t) = \hat{i} \cdot \frac{d}{dt}x(t) + \hat{j} \cdot \frac{d}{dt}y(t) + \hat{k} \cdot \frac{d}{dt}z(t)$$

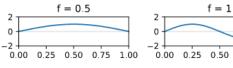
$$\vec{a}(t) = \hat{i} \cdot \frac{d^2}{dt^2} x(t) + \hat{j} \cdot \frac{d^2}{dt^2} y(t) + \hat{k} \cdot \frac{d^2}{dt^2} z(t)$$

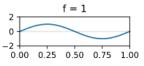
$$\vec{r}(t) = x(t) \cdot \hat{i} + y(t) \cdot \hat{j} + z(t) \cdot \hat{k}$$

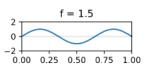
$$\implies \vec{v}(t) = \frac{d}{dt}\vec{r}(t)$$

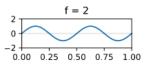
$$= \frac{\partial}{\partial t} \left(x(t) \cdot \hat{i} + y(t) \cdot \hat{j} + z(t) \cdot \hat{k} \right)$$

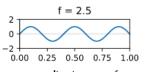
$$= \hat{i} \cdot \frac{d}{dt} x(t) + \hat{j} \cdot \frac{d}{dt} y(t) + \hat{k} \cdot \frac{d}{dt} z(t)$$

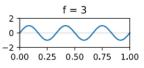

$$\Rightarrow \vec{a}(t) = \frac{d}{dt}\vec{v}(t)$$

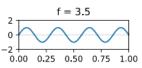

$$= \frac{\partial}{\partial t} \left(\hat{i} \cdot \frac{d}{dt} x(t) + \hat{j} \cdot \frac{d}{dt} y(t) + \hat{k} \cdot \frac{d}{dt} z(t) \right)$$

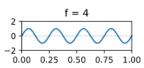

$$= \hat{i} \cdot \frac{d^2}{dt^2} x(t) + \hat{j} \cdot \frac{d^2}{dt^2} y(t) + \hat{k} \cdot \frac{d^2}{dt^2} z(t)$$

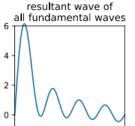

Setting plt.close() Before deleting defs: len(str(soup)) = 90495 After deleting defs: len(str(soup)) = 89401 Setting plt.ion() Problem Template: _problem_plot_fundamental_frequencies Plot waves with fundamental frequencies.


Answer:









A series of springs in a series with s

Answer:

Solution:

The total displacement is sum of dis

$$x = x_0 + x_1$$

As the force through each of the spi

$$\implies \frac{F}{k} = \frac{F}{k_1} + \frac{F}{k_0}$$

$$\implies \frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_0}$$

$$\implies k = \frac{1}{\frac{1}{k_1} + \frac{1}{k_0}}$$

1. the sum of potential energy, (i 2, the sum of potential energy of

The potential energy due to two

$$\begin{split} \vec{U} &= \vec{U}_{ext0} + \vec{U}_{ext1} \\ &+ \vec{U}_{01} \end{split}$$

$$=q_0V(\vec{r}_0)+q_1V(\vec{r}_1)$$

+
$$\frac{1}{4\pi\epsilon_0}\frac{q_0q_1}{|\vec{r}_0-\vec{r}_1|}$$

$$= q_0 V(\vec{r}_0) + q_1 V(\vec{r}_1) + \frac{1}{4\pi\epsilon_0} \left(\frac{q_0 q_1}{|\vec{r}_0 - \vec{r}_1|} \right)$$

Problem Tempiace. _problem_iemgcm

If sticks of lengths l_0 , l_1 , l_2 , l_3 and l_4 are joined together, what is the resultant length?

ke.printAnswer()

$$\vec{l} = \vec{l}_0 + \vec{l}_1 + \vec{l}_2 + \vec{l}_3 + \vec{l}_4$$

ke.printSolution()

Assuming that the sticks are joined in a straight line, the resultant length when sticks of lengths I_0 , I_1 , I_2 , I_3 as

 $I = I_0 + I_1 + I_2 + I_3 + I_4$

If they are not joined in a straight line, the resultant length will be a vector value:

 $\vec{l} = \vec{l}_0 + \vec{l}_1 + \vec{l}_2 + \vec{l}_3 + \vec{l}_4$

In absence of any information, the second result is more appropriate.

M4. The motors of a rocket launched from the Earth are used only near the Earth in order to give the rocket just velocity of the rocket is a minimum and calculate the speed with which it hits the Moon's surface (the motion of

	Mass /kg	Radius /km
Earth	6.0×10^{24}	6.4×10^{3}
Moon	7.3×10^{22}	1.7×10^{3}

Earth-Moon distance = 3.8×10^5 km.

Answer:

M4. 3.4×10^5 km from centre of Earth; 2.4 km s⁻¹.

Find the heat required to convert 100 °C steam to 150 °C steam

 $a = mc\Lambda T$

 $q = (25 \text{ g})x(2.09 \text{ J/g} \cdot ^{\circ}\text{C})[(150 ^{\circ}\text{C} - 100 ^{\circ}\text{C})]$

 $q = (25 g)x(2.09 J/g \cdot {^{\circ}C})x(50 {^{\circ}C})$

q = 2612.5 J

The heat required to convert 100 °C steam to 150 °C steam = 2612.5

Step 6:

Find total heat energy. In this final step, put together all of the answers from the previous calculations

HeatTotal = HeatStep 1 + HeatStep 2 + HeatStep 3 + HeatStep 4 + HeatStep 5

HeatTotal = 522.5 J + 8350 J + 10450 J + 56425 J + 2612.5 J

HeatTotal = 78360 J

Answer:

The heat required to convert 25 grams of -10 °C ice into 150 °C steam is 78360 J or 78.36 kJ.

Express f as a function of v, u

f = Focal length of mirror

u = Distance of object from mirror

v = Distance of image from mirror

Use constant = 1

ke.printAnswer()

$$\frac{1}{f} \propto \frac{u+v}{uv}$$

$$\implies \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

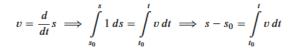
ke.printSolution()

Let:

f = Focal length of mirror

u = Distance of object from mirror

v = Distance of image from mirror


The relation between variables:

$$\overrightarrow{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

$$\implies \oint_{C} \overrightarrow{E} \, \overrightarrow{dS} = \frac{1}{4\pi\epsilon_{0}} \frac{q}{r^{2}} \hat{r} \, 4\pi r^{2}$$

$$\implies \oint_{\mathbb{C}} \overrightarrow{E} \, d\overrightarrow{S} = \frac{q}{\epsilon_0}$$

advanced_form

$$a = \frac{d}{dt}v \implies \int_{v_0}^{v} 1 \, dv = \int_{t_0}^{t} a \, dt \implies v - v_0 = \int_{t_0}^{t} a \, dt$$

$$\implies \frac{d}{dt}s = v_0 + \int_{t_0}^t a \, dt \implies \int_{s_0}^s 1 \, ds = \int_{t_0}^t \left(v_0 + \int_{t_0}^t a \, dt \right) dt$$

$$a = \frac{d}{dt}v \implies a = \frac{d}{dt}s\frac{d}{ds}v \implies a = v\frac{d}{ds}v \implies \int\limits_{s_0}^{s} a\,ds = \int\limits_{v_0}^{v} v\,dv$$

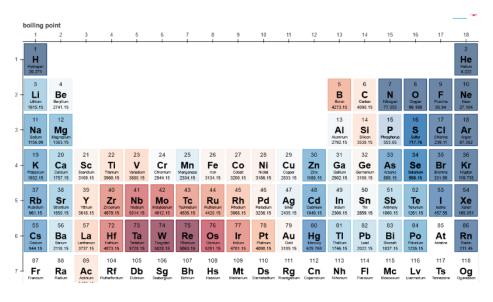
$$o = mv = m\frac{d}{dt}s$$

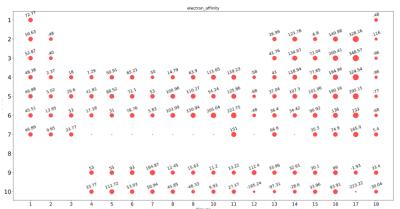
$$\implies \frac{d}{dt}s = v_0 + \int_{t_0}^t a \, dt \implies \int_{s_0}^s 1 \, ds = \int_{t_0}^t \left(v_0 + \int_{t_0}^t a \, dt\right) dt$$

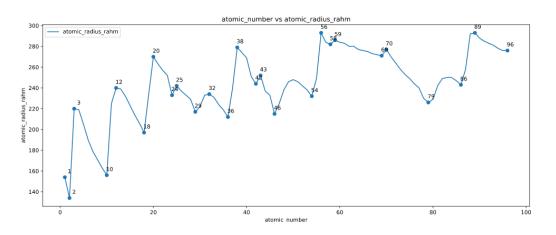
$$a = \frac{d}{dt}v \implies a = \frac{d}{dt}s\frac{d}{ds}v \implies a = v\frac{d}{ds}v \implies \int\limits_{s_0}^{s}a\,ds = \int\limits_{v_0}^{v}v\,dv$$

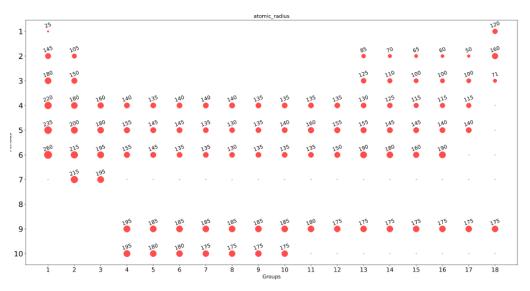
$$p = mv = m\frac{d}{dt}s$$

$$F = ma = m\frac{d}{dt}v = m\frac{d^2}{dt^2}s$$

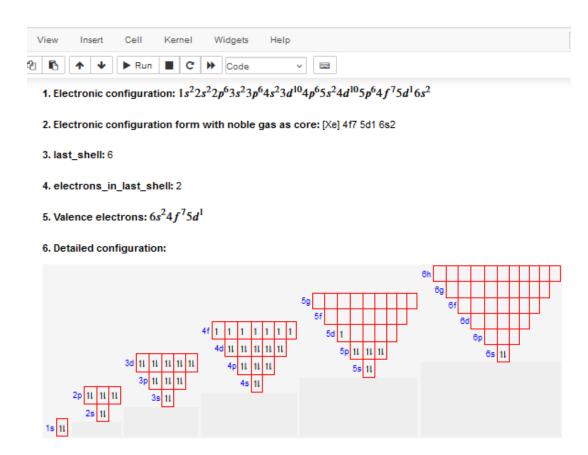

$$W = Fs$$



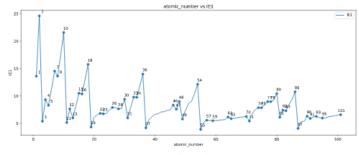

Chemistry has been in-depth and fun

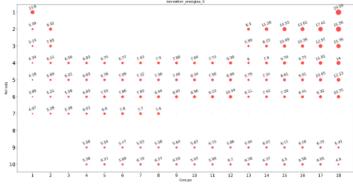


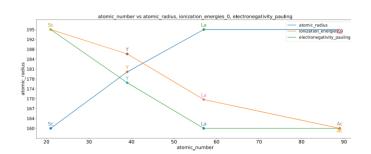
He uses periodic table plotting to enhance his understanding of elements and their properties



He knows atoms, their structures, electronic configurations, possible bonds and much more

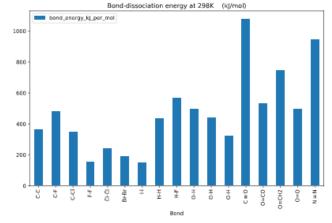

- He can not only write the electronic configuration as shown but also interpret them to predict possible bonds.
- He is also well versed in all topics of high school chemistry and has already covered almost everything of AP Chemistry.

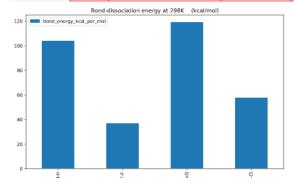




□ 0 • managers	■ FunctionalGroupManager.ipynb	1	trom xv.cnemistry.physical import Atommanager	Lithium (LI, 8): Electronic configuration : 1s ² 2s ¹
□	■ EnvironmentManager.ipynb	1	ke = AtomManager(verbose = False)	Valence electrons (1): $2s^3$ Electrons in the last shell: 1
☐ ■ AtomManager.ipynb	■ Grade10HonorsManager.ipynb	2	ke.printProblemTypes()	»ITTI
☐ ■ ChemicalReactionManager.ipynb			_problem_atomic_tundamental_particles	10
☐ ■ PeriodicTrendsManager.ipynb	AmideGroupManager.ipynb	2.	_problem_identify_element	As the valence electrons in the last shell of Li are 1, the best possible choice for this atom is to lose 1 electrons. Bismuth (Bi, 83):
☐ ■ AcidBaseManager.ipynb	PhysicalChemistryManager-Copy1.ipynb	4.	_problem_element_mass	Electronic configuration : $1s^22s^22\rho^63s^23\rho^64s^23d^{10}4\rho^65s^24d^{10}5\rho^64f^{14}5d^{10}6s^26\rho^3$ Valence electrons (5) : $6s^24f^{14}5d^{10}6\rho^3$
☐ ■ ComplexCompoundManager.ipynb	PeriodicTableManager.ipynb	_6.	_problem_based_on_chemical_formula _problem_spd_orbital_shapes	Electrons in the last shell: 5
☐ ■ ChemCalcManager.ipynb	ReactivityManager.ipynb	8.	_problem_possible_quantum_numbers _problem_electronic_config	
☐ ■ AcidBaseManager-Copy1.ipynb	AtomManager-RISHI.ipynb	_10.	_problem_electronic_config_noble_gasesproblem_forming_a_compound	
☐ ■ TopicsManager.ipynb	- Numerical Orientia Stymana get. pyrib	_12.	problem_valence_electronic_configproblem_ionization_energy_of_atom	**************************************
☐ ■ AtomManager-NUTAN.ipynb	SmilesManager.ipynb		_problem_positive_ionization_energies_of_elemen_problem_electronic_config_based_props	For BL. with 3 unpaired electrons in the last shell, the best possible choice is to share or pain 3 electrons. It can do share or pain in parts too.
☐ ■ PhysicalChemistryManager.ipynb		_16.	_problem_element_isotopes_problem_bond_energy_inorganic_covalent_bonds	Likely Compounds:
☐ ■ HighSchoolChemistryManager.ipynb	□ out	17.	problem_bond_energy_organic_covalent_bondsproblem_oxides_of_an_element	For Bil, with 3 unpaired electrons in the last shell, the best possible choice is to share or gain 3 electrons. It can do share or gain in parts too
☐ ■ MolarManager.ipynb	misc.ipynb		problem_compare_reactivity_of_elements	As the valence electrons in the last shell of LI are 1, the best possible choice for this atom is to lose 1 electrons. Likely Compounds:
☐ ■ MoleculesManager.ipynb	MoleculesManager-Copy1.ipynb			For Bit, with 3 unpaired electrons in the last shell, the best possible choice is to share or gain 3 electrons. It can do share or gain in parts too.
☐ ■ GroupPropertiesManager.ipynb	ReactionMechanismManager.ipynb	1	ke.getRandomProblem(problem_type = 10, verbose = Tru	As the valence electrons in the last shell of Li are 1, the best possible choice for this atom is to lose 1 electrons. Chamboal formula: 1.j. Ri.
☐ ■ ElementGroupManager.ipynb	■ NameuReactionSwanaget.ipynb		oblem Template: _problem_forming_a_compound w can elements with atomic numbers 3 and 83 form compounds?	Chemical formula: Li ₃ Bi 3 Li + Ri — By diction learner Li ₃ Bi
ElementsManager.ipynb	py3Dmol-examples.ipynb		•	$3 \cdot 1 = 3 \text{ Li}$ $\xrightarrow{\text{clicitons insulared to}} 1 \cdot 3 = 3 \text{ Bi}$ See the links for more information.
☐ ■ FunctionalGroupManager.ipynb	■ SolutionManager.ipynb		ke.printAnswer()	1. Li ₃ Bi
☐ ■ EnvironmentManager.ipynb		Li ₃ E	я́	
	r			

First Ionization Energies:





8	нн	hydrogen	104.0	435	4.52	н	Strong, nongolarizable bond
9	H-F	hydrogen Nuoride	136.0	559	5.90	H,F	Very strong
10	0-H	in water	119.0	497	5.15	0,н	Very strong, hydroxyl radical reactive with almost all organics axiothermically by H atom abstraction
11	O-H	in methenol	105.0	440	4.55	0,Н	Slightly stronger than C-H bonds
12	0-H	in e-tocogherol (en entioxident)	77.0	323	1.25	о,н	O-H band strength depends strongly on substituent on O
13	C=0	cerban manaxide	257.0	1077	11.16	C,0	Strongest band in neutral malecule
14	0=00	carbon dioxide	127.0	532	5.51	c,o	Slightly stronger than C-H bonds, surprisingly low due to stability of C \equiv O
15	0-042	formaldehyde	179.0	745	7.75	C,0,H	Much stronger than C-H bonds
16	0=0	cxygen	119.0	495	5.15	0	Stronger than single bonds, weaker than many other double bonds
17	N⊒N	ntrogen	226.0	945	9.79	N	One of the strongest bonds, large activation energy in production of ammonia

Bond energy koal per mol: Bond-dissociation energy at 298K (kcal/mol) Bond energy kj per mol: Bond-dissociation energy at 298K (kJ/mol) Bond energy ev per bond: Bond-dissociation energy at 298K (eV/bond)

Molecules hydrogen		Nuorine	axygen	chlorine
bond energy koal per mol	104.0	37.0	119.0	58.0
bond energy kJ per mol	438	(ST	495	242
bond energy eV per bond	4.52	1.63	5.15	2.51
elements	н	F	0	0
Comment	Strong, nongolarizable bond	Very week, in conjunction with strong C-F and H-F bonds, leads to an explosive reaction with hydrocarbons	Stronger than single bonds, weaker than many other double bonds	Indicated by facility of photochemical chlorinations

Solution:

anion:

complex compound: What is the name of this complex ion $[CrCl_2(H_2O)]$

ammine tetra agua chromium (II) sulfate

ammine tetra aqua chromium (II)

tetraaquadichlorochromium(III) ion

Solution:

ligands:

Cl chloro H_2O aqua

In alphabetical order: aqua chloro

There are 4 aqua and 2 chloro ligands and both are r ammine: NH_3

tetra aqua di chloro

ligands:

tetra aqua: $(H_2O)_4$

sulfate = SO_A^{2-}

complex ion:

metal:

metal: Cr

Oxidation number of $H_2O=0$. Hence,

 $x + 2(-1) + 0 = 1 \Rightarrow x = +3$

Therefore, oxidation Number of Cr = +3. It will be cal chromium(III)

metal:

chromium(II): Cr(II)

Oxidation number of $NH_3 = 0$. Oxidation number of $H_2O = 0$. Oxidation number of Cr(II) = +2.

Hence, charge on ion: 0 + 0 + 2 = +2

name of molecule:

tetra aqua di chloro chromium(III) ion. tetraaquadichlorochromium(III) ion.

chemical formula of complex ion:

 $[Cr(H_2O)_4(NH_3)]^{2+}$ $[Cr(NH_3)(H_2O)_4]^{2+}$

chemical formula of molecule: $[Cr(H_2O)_4(NH_3)]SO_4$ $[Cr(NH_3)(H_2O)_4]SO_4$

According to the Lewis definition, an acid is any species which can accept a lone pair of electrons, and a base is any species which can donate a lone pair of

In the first reaction ZnO accepts a pair of electrons from NaOH

In the second reaction H_2SO_4 accepts a pair of electrons from ZnO.

$$ZnO + H_2SO_4 = ZnSO_4 + H_2O$$

Lewis acid + Lewis base

If a molecule/ion behaves both like a Lewis acid and a Lewis base, it it called amphoteric molecule/ion.

ZnO acts both like a Lewis acid and a Lewis base

An amphiprotic molecule is slightly different. It is a molecule that can both accept or donate a proton, making it an acid as well as a base according to Bron:

All amphiprotic molecules are amphoteric molecules. But some of the amphoteric molecules may not be amphiprotic molecules as they may accept a pair

Armwer:

Reactant

Ti - 47.867 gram

Reactant

 $N_2 = 14.007$ gram

Product

TiN = 61.874 gram

Solution:

We have,

 $2Ti + N_2 \rightarrow 2TiN$

All calculations are based on standard mass of elements and particles.

Ti = 47.867

$$\rightarrow$$
 2 · Ti = 2 · (47.867) = 2 · 47.867 = 95.734

 $N_2 = 2 \cdot 14.007 = 28.014$

Ti = 47.867

N = 14.007

$$\rightarrow$$
 2 · TiN = 2 · (47.867 + 14.007) = 2 · 61.874 = 123.748

Now, let us create a table with data calculated above.

2Ti + N₂ → 2TiN

Perticulars	Reactant Ti	Reactant N ₂	Product TiN
moles (a)	2	1	2
standard mass in gram (b)	95.734	28.014	123.748
given mass in gram (c)			61.874
ratio of given mass and standard mass $(d = db)$			$\frac{61.874}{123.748} = 0.5$
calculated mass in gram $(e = d \cdot b)$	0.5 - 95.734 - 47.867	0.5 - 28.014 14.007	0.5 - 123.748 = 61.874

Problem Template: _problem_nth_order_rate_of_reaction

Find the equation of concentration and expression of half-life of a reaction of

 $C = \frac{4C_0}{\left(C^{\frac{1}{2}}kt + 2\right)^2}$

$$T_{\frac{1}{2}} = \frac{2(-1+2^{\frac{1}{2}})}{C_0^{\frac{1}{2}}k}$$

Solution

Let concentration of reactant is C.

For $\frac{3}{2}$ th order reaction:

Rate = $k \cdot C^{\frac{1}{2}}$ ··· (i) $\rightarrow -\frac{d}{dt}C = k \cdot C^{\frac{1}{2}}$ $\rightarrow -\frac{1}{C^{\frac{1}{2}}}dC - kdt$

$$\rightarrow \frac{1}{C^{\frac{1}{2}}} dC = -kdt$$

If the concentration changes from C_0 to C in time 0 to t

$$\implies \int_{G}^{C} \frac{1}{C_{z}^{2}} dC = -k \cdot \int_{0}^{t} 1 dt \qquad \cdots (ii)$$

$$\rightarrow \left[-\frac{2}{C^{\frac{1}{2}}}\right]_{C}^{C_{0}} = -k \cdot |t|_{0}^{t}$$

$$\longrightarrow \frac{2}{C_0^{\frac{1}{2}}} - \frac{2}{C^{\frac{1}{2}}} = -kt$$

$$\rightarrow C = \frac{4C_0}{\left(C_0^{\frac{1}{2}}kt + 2\right)^2} \quad \cdots \text{ (iii)}$$

If the concentration changes from C_0 to its half, $\frac{C_0}{2}$, in time 0 to $T_{\frac{1}{2}}$, called

$$\longrightarrow \int_{-\infty}^{\frac{c_0}{2}} \frac{1}{e^{r^2}} dC = -k \cdot \int_{-\infty}^{T_1} 1 dt \quad \cdots \text{ (iv)}$$

Problem Template: _problem_props_of_rate_of_reaction
Find the order and dimension of the rate constant for the reaction given below:

 $3Mg + N_2 \rightarrow Mg_3N_2$

Rate of reaction $= k [Mg]^{\frac{3}{2}} [N_2]^2$

Armover

Order of reaction $=\frac{3}{2}+2=\frac{7}{2}$

Dimension
$$(k)$$
 = Dimension $\left(\frac{\left(long(k)^{3}\right)^{\frac{3}{2}}}{arx unt of ubstaces}\right)^{\frac{3}{2}}$

inh time:

Order of reaction is sum of exponents of concentrations in the rate equation.

Rate of reaction =
$$k[Mg]^{\frac{3}{2}}[N_2]^2$$
 ... (i)

Order of reaction
$$=\frac{3}{2}+2=\frac{7}{2}$$
 ... (ii)

The unit of concentration
$$=\frac{\text{mol}}{\text{liter}}$$

The unit of rate of change in concentration
$$=\frac{\text{unit of concentration}}{s} = \frac{\frac{\text{mod}}{\text{liter}}}{s} = \frac{\text{mo}}{\text{liter}}$$

Therefore from (I).

Rate of reaction
$$= k[Mg]^{\frac{1}{2}}[N_2]^2$$

Unit (Rate of reaction) =
$$k \left(\frac{\text{mol}}{\text{liter}}\right)^{\frac{3}{2}} \left(\frac{\text{mol}}{\text{liter}}\right)^{2}$$

$$= \frac{k \cdot \text{mol}^{\frac{7}{2}}}{\text{liter}^{\frac{7}{2}}}$$

$$\implies \frac{\text{mol}}{\text{liter} \cdot s} = \frac{k \cdot \text{mol}^{\frac{7}{2}}}{\text{liter}^{\frac{7}{2}}}$$

$$\rightarrow k - \frac{\text{liter}^{\frac{\lambda}{2}}}{\text{mol}^{\frac{\lambda}{2}} \cdot s}$$

Converting it into dimension:

Dimension
$$(k)$$
 = Dimension $\frac{\left(length^3\right)^{\frac{3}{2}}}{l}$... $(length^3)^{\frac{3}{2}}$

$$PV = \pi RT$$

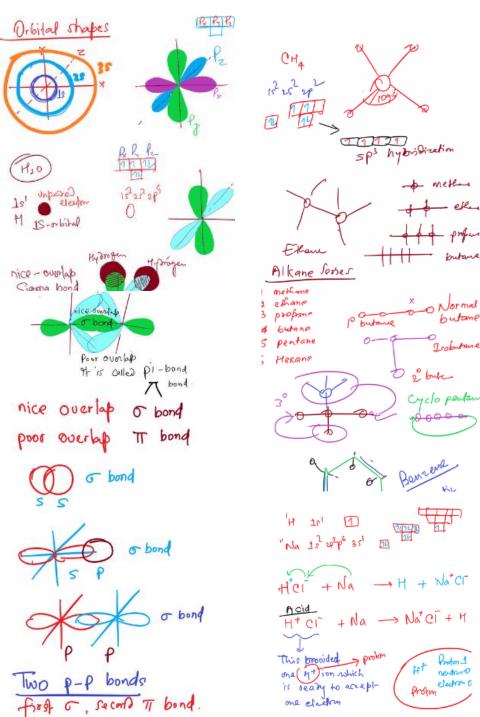
 $\longrightarrow P = \frac{\pi}{\nu}RT = CRT$ where C is concentrati
 $\longrightarrow P = CRT$ ··· (i)

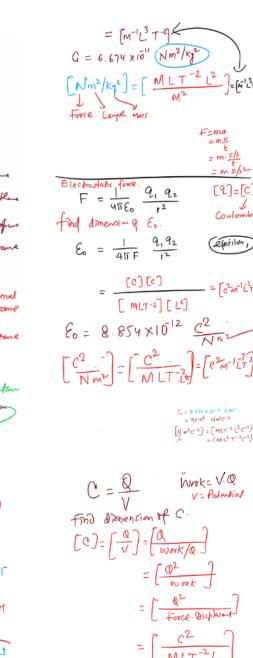
Now, let us create a table of data required for equilibri

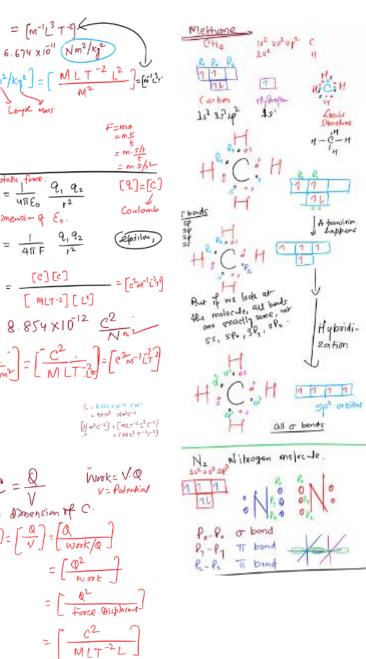
$$F + e^- \rightarrow F^-$$

Perticulars	Reactent F
Initial moles	1
Equilibrium moles (at is conversion factor.)	1-a
Initial partial pressures (assumed)	P
Equilibrium partial pressures	$P(1-\alpha)$
Concentration symbols	[F]
Concentration as function of moles and volume	$\frac{1-\alpha}{V}$
Pressure as function of concentration, R and T using (f)	[F] <i>RT</i>

Therefore,

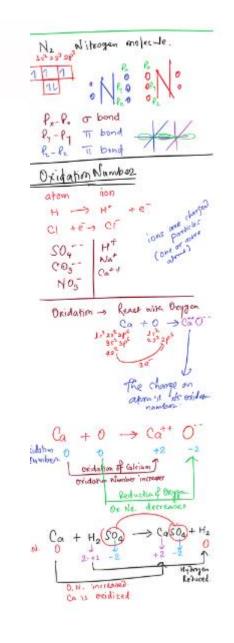

$$K_c = \frac{|F^-|}{|F| |e^-|}$$


$$\frac{a}{|F|}$$


$$K_{p} = \frac{P_{V}}{P_{V} \cdot P_{c}}$$

$$= \frac{P\alpha}{P(1-\alpha) \cdot P(1-\alpha)}$$

$$= \frac{RT \left[F^{-}\right]}{RT \cdot \left[F^{-}\right] \cdot RT \cdot \left[R^{-}\right]}$$



= MY

€ ± 8.854 × 10*12. F m⁻¹ = 9x109 Nm2c-2

Works V.Q

= [C2M-1L-2+2]

SAT English is tough but we made lot of progress.

We did sample papers, read prose, poetry and articles.

Learning English has been comprehensive

- We focused on vocabulary, pronunciation, reading poetry, and articles, and doing SAT test papers.
- The focus is on analytical learning, which is required for modern English tests.


```
21. problem fill gender words
22. problem gender match columns
23. problem option genders
24. problem find odd gender
25. problem word with opposite gender
problem thesaurus match synonyms
problem thesaurus match antonyms
problem find odd synonyms antonyms
29. problem idioms match columns
problem find synonym thesaurus
31. problem find antonym thesaurus
problem find by synonyms antonyms
33. problem regular synonyms
34. problem regular antonyms
35. problem collective nouns
36. problem regular nouns singular plural
37. problem regular adjective forms
38. problem_regular_similes
39. problem regular homonyms
40. problem regular homophones
41. problem compound prepositions
42. problem animal sounds
43. problem animal youngs
44. problem single word for phrases
45. problem american british words
```



```
In [1]:
 1 from xv.english import VocabularyManager
                                                        In [2]:
    ke = VocabularyManager()
    ke.printProblemTypes()
0. problem english for junior competitions
1. problem english toefl words
2. problem predict similar opposite words
problem_single_word_for_phrase
4. problem answer yes no
5. _problem_fill_confusing_words_with_meanings and usages
problem_fill_misused_word_sets_with_usages
7. problem fill confusing words
8. problem fill misspelled words
9. problem fill homophone words
10. problem identify homophone words in sentences
11. problem fill similar opposite words
12. problem fill weird words
13. problem predict prefixes
14. problem predict suffixes
15. _problem_predict_word_roots
16. problem words related to phobia
17. _problem_words_related_to_mania
18. _problem_fill_in_with_appropriate_words
```

19. problem test yourself

```
from xv.english import SpellingManager
                                                      1 from xv.english import BookManager
                                               In [2]:
    ke = SpellingManager()
    ke.printProblemTvpes()
0. problem random spellings

    problem leading word spellings

2. problem trailing word spellings
problem_closest_syllables_pairs
4. problem homophone words
5. problem prefixes word pairs
6. problem suffixes word pairs
7. problem misspelling prone pairs
8. problem confusing word pairs
9. problem gender word pairs
10. problem phrases
11. problem idioms
12. problem game guess word
```

```
ke = BookManager(file path = "The Race f
   ke.printProblemTvpes()
problem book translate
1. problem hear and write
2. problem read a text
problem put sentence in order
problem_put_paragraph_in_order
problem insert a sentence
problem word usage
7. problem fill words of a pos
problem word usage fill blanks
9. _problem_noun_fill_blanks
10. problem pronoun fill blanks
11. problem adjective fill blanks
12. problem verb fill blanks
13. problem adverb fill blanks
14. problem preposition fill blanks
15. _problem_conjunction_fill_blanks
16. problem interjection fill blanks
17. problem determiner fill blanks
18. _problem_predeterminer_fill_blanks
19. problem fill confusing words
20. problem match confusing words meanings
22. problem find misspelled out
23. problem fill gender words
24. _problem_gender_match_columns
25. problem option genders
26. problem find odd gender
27. problem word with opposite gender
28. _problem_thesaurus_match_synonyms
29. problem thesaurus match antonyms
30. problem find odd synonyms antonyms
31. problem idioms match columns
32. problem find synonym thesaurus
33. problem find antonym thesaurus
34. problem find by synonyms antonyms
```

American spellings are given below. Use British spellings to fill in the blanks. license, equaled, woolen, centimeter "You have to get a ______ for an organ, and you haven't got one, and in that way you collect a crowd. Where do you lodge?" - Crime And Punishment By Fyodor Dostoyevsky ... Thus do they juggle and trifle in all their discourses at our expense; and they could not give me one proposition against which I should not know how to raise a contrary of - Essays Of Michel De Montaigne — Complete By Michel De Montaigne ... At first, they were a mere storm of coarse red caps and coarse ______rags; but, as they filled the place, and stopped to dance about Lucie, some ghastly apparition of a dance-figure gone raving mad arose among them. ... - A Tale Of Two Cities _ erre-à-poisson through the sewer de la sonnerie, the rue popincourt, through the sewer of the chemin-vert, the rue de la roquette, through the sewer of the rue de lappe; it covered the drain of the rue des champs-élysées to the height of thirty-five ______; and, to the south, through the vent of the seine, performing its functions in inverse sense, it penetrated the rue mazarine, the rue de l'échaudé, and the rue des marais, where it stopped at a distance of one hundred and nine metres, a f... [trimmed chars by brute force] - Les Misérables By Victor Hugo license, equaled, woolen, centimeter licence, centimetres, equal, woollen Solution: license: licence equaled: equalled woolen: woollen centimeter: centimetre "You have to get a licence for an organ, and you haven't got one, and in that way you collect a crowd. Where do you lodge?" - Crime And Punishment By Fyodor Dostoyevsky ... Thus do they juggle and trifle in all their discourses at our expense; and they could not give me one proposition against which I should not know how to raise a contrary of equal force. -Essays Of Michel De Montaigne - Complete By Michel De Montaigne ... At first, they were a mere storm of coarse red caps and coarse woollen rags; but, as they filled the place, and stopped to dance about Lucie, some ghastly apparition of a dance-figure gone raving mad arose among them. ... - A Tale Of Two Cities _ erre-à-poisson through the sewer de la sonnerie, the rue popincourt, through the sewer of the chemin-vert, the rue de la roquette, through the sewer of the rue de lappe; it covered the drain of the rue des champs-élysées to the height of thirty-five centimetres; and, to the south, through the vent of the seine, performing its functions in inverse sense, it penetrated the rue mazarina tha rua da l'áchaudá and tha rua das marais where it stonned at a distance of one hundred and nine metres a fill frimmed chars by brute force I . Les Misérables Ry Victor Fill in the blanks with words similar to the sounds asses and roosters make. ... hamsher one noue lit babstis babler sobed a way just fineshing his sermon he says o good lord i hop you will consider what foue hints i have given and i will cleare it up sum time hence i am much wore down now the wether being very worme to day less ______ & so went on fire fire & brimstone & grunting & fithing and tried to cry & snufel & blow the sconks horne & sum the old souls & yong fouls sot to crying i tuck my hat and went out houe mankind & women kind is imposed upon all over the world more ... [trimmed chars by brute force] - A Pickle For The Knowing Ones By Timothy Dexter ... n whare he was bone he sade now whare what is all that now whare was your mother over shaderd i says my mother was if i was to gess no i tell in now town borne o on the water i says you beat me and so wee lafed and it shuk of the spleane should him a crows neast be can carve one a fine fellow--i shold had all marbel if any bodey could to me the prise so i have sent for 8 busts for kings and grat men and 1 lion & 2 gray hounds i hope to hear in foue days to all onnest men - A Pickle For The Knowing Ones By Timothy Dexter roosters: crow asses: bray ... hamsher one noue lit babstis babler sobed a way just fineshing his sermon he says o good lord i hop you will consider what foue hints i have given and i will cleare it up sum time hence i am much wore down now the wether being very worme to day less bray & so went on fire fire & brimstone & grunting & fithing and tried to cry & snufel & blow the sconks horne & sum the old souls & yong fouls sot to crying i tuck my hat and went out houe mankind & women kind is imposed upon all over the world more ... [trimmed chars by brute force] - A Pickle For The Knowing Ones By Timothy Dexter

... n whare he was bone he sade now whare what is all that now whare was your mother over shaderd i says my mother was if i was to gess no i tell in now town borne o on the

water i says you beat me and so wee lafed and it shuk of the spleane shoue him a crows neast he can carve one a fine fellow--i shold had all marbel if any bodey could to me the

prise so i have sent for 8 busts for kings and grat men and 1 lion & 2 gray hounds i hope to hear in foue days to all onnest men - A Pickle For The Knowing Ones By Timothy

Dexter

rigor, riggers, rigors

... endeavours to help forward the happiness of all other persons; for there never was any man such a morose and severe pursuer of virtue, such an enemy to pleasure, that though he set hard rules for men to undergo, much pain, many watchings, and other rigors, yet did not at the same time advise them to do all they could in order to relieve and ease the miserable, and who did not represent gentleness and good-nature as amiable dispositions, and from thence they infer that if a man ought to advance ... [trimmed chars by brute force] - **Utopia**

It was not till late next day that I spoke to Mrs. Grose; the rigor with which I kept my pupils in sight making it often difficult to meet her privately, and the more as we each felt the importance of not provoking-on the part of the servants quite as much as on that of the children-any suspicion of a secret flurry or that of a discussion of mysteries. I drew a great security in this particular from her mere smooth aspect. ... - The Turn Of The Screw By Henry James

Ham carrying me on his back and a small box of ours under his arm, and Peggotty carrying another small box of ours, we turned down lanes bestrewn with bits of chips and little hillocks of sand, and went past gas-works, rope-walks, boat-builders' yards, ship-breakers' yards, caulkers' yards, riggers ' lofts, smiths' forges, and a great litter of such places, until we came out upon the dull waste I had already seen at a distance: when Ham said. - David Copperfield By Charles Dickens

Solution:

Homonym word: shower

The boys shower in the morning.

Tomorrow will be cloudy with showers.

... The ladies voluntarily permitted the gentlemen to review their legs. If I were in command, I would not permit the ladies to raise an umbrella under the "para para" of a shower. Their hastening figures are so fascinating. - The American Diary Of A Japanese Girl By Yoné Noguchi

The shower stopped. The pavements were glossed like a looking-glass, ... - The American Diary Of A Japanese Girl By Yoné Noguchi

... Condescend to enter!" I showered my wooden-clogged greeting over Ada. - The American Diary Of A Japanese Girl By Yoné Noguchi

Fill in the blanks with similes made of words, sweet, stiff, honey and poker.

"So you won't be my friend?" she said, smiling as , and creeping close up. - Wuthering Heights By Emily Brontë

... "We ought to rehearse tonight. Come here, Amy, and do the fainting scene, for you are as _______ in that." - Little Women By Louisa May Alcott

Answer:

sweet as honey, stiff as a poker

Solution:

as stiff as a poker (a post, a board)

as sweet as honey (sugar)

"So you won't be my friend?" she said, smiling as sweet as honey, and creeping close up. - Wuthering Heights By Emily Brontë

... "We ought to rehearse tonight. Come here, Amy, and do the fainting scene, for you are as stiff as a poker in that." - Little Women By Louisa May Alcott

Solution:

herd of elephants

flock of goats

'Maria didn't need to be told. She grabbed the BIDON and went dattering down the stairs like a herd of elephants and in three minutes she was back with two pounds of bread under one arm and a half-litre bottle of wine under the other. I didn't stop to thank her; I just seized the bread and sank my teeth in it. ... - Down And Out In Paris And London

... t is true, as it is, they may all say what they like; though, to tell the truth, if the coral beads and the suit had not come i would not have believed it either; for in this village everybody thinks my husband a numskull, and except for governing a flock of goats, they cannot fancy what sort of government he can be fit for, god grant it, and direct him according as he sees his children stand in need of it. i am resolved with your worship's leave, lady of my soul, to make the most of this fair d ... [trimmed chars by brute force] - Don Quixote By Miquel De Cervantes Saavedra

Fill in the blanks with antonyms of the word 'junior'.

Solution:

The antonyms of junior: lead, senior, experiences, old

... It was, in a new form, the old, old trouble that eats the heart out of every civilization: snobbery, the desire for possessions, creditable appendages; and it is to escape this rather than the lusts of the flesh that saints retreat into the Himalayas. ... - A Passage To India By E M Forster

... He wanted to avenge Miss Quested and punish Fielding, while remaining scrupulously fair. He wanted to flog every native that he saw, but to do nothing that would lead to a riot or to the necessity for military intervention. The dread of having to call in the troops was vivid to him; soldiers put one thing straight, but leave a dozen others crooked, and they love to humiliate the civilian administration. ... - A Passage To India By E M Forster

"No more do I. My experiences here have cured me. But I want others to want it." - A Passage To India By E M Forster

... And trying not to sound patronizing, he stretched his hand over the table, and said: "We shall all have to hang together, old man, I'm afraid. I'm your junior in years, I know, but very much your senior in service; you don't happen to know this poisonous country as well as I do, and you must take it from me that the general situation is going to be nasty at Chandrapore during the next few weeks, very nasty indeed." - A Passage To India By E M Forster

Fill in the blanks with synonyms of the word 'faith'.

'I ______,' said Mr. Lorry, after another pause of feeble sympathy and humility, 'that you accompany Miss Manette to France?' - A Tale Of Two Cities

ne of the first considerations which arose in the business mind of Mr. Lorry when business hours came round, was this:-that he had no right to imperil Tellson's by sheltering the wife of an emigrant prisoner under the Bank roof, His own possessions, safety, life, he would have hazarded for Lucie and her child, without a moment's demur; but the great _______ he held was not his own, and as to that business charge he was a strict man of business. - A Tale Of Two Cities

... They were even boastful of its eminence in those particulars, and were fired by an express conviction that, if it were less objectionable, it would be less respectable. This was no passive _______, but an active weapon which they flashed at more convenient places of business. Tellson's (they said) wanted no elbow-room, Tellson's wanted no light, Tellson's wanted no embellishment. ... - A Tale Of Two Cities

Mr. Cruncher, in an access of _____, growlingly repeated the words after Miss Pross, like somebody at church. - A Tale Of Two Cities

Answer

belief, hope, loyalty, trust

Solutio

The synonyms of faith: belief, hope, loyalty, trust

'I hope,' said Mr. Lorry, after another pause of feeble sympathy and humility, 'that you accompany Miss Manette to France?' - A Tale Of Two Cities

ne of the first considerations which arose in the business mind of Mr. Lorry when business hours came round, was this: that he had no right to imperil Tellson's by sheltering the wife of an emigrant prisoner under the Bank roof, His own possessions, safety, life, he would have hazarded for Lucie and her child, without a moment's demur; but the great trust he held was not his own, and as to that business charge he was a strict man of business. - A Tale Of Two Cities

... They were even boastful of its eminence in those particulars, and were fired by an express conviction that, if it were less objectionable, it would be less respectable. This was no passive belief, but an active weapon which they flashed at more convenient places of business. Tellson's (they said) wanted no elbow-room, Tellson's wanted no light, Tellson's wanted no embellishment. ... - A Tale Of Two Cities

Mr. Cruncher, in an access of loyalty, growlingly repeated the words after Miss Pross, like somebody at church. - A Tale Of Two Cities

- 1. inconscient
- 2. muse
- 3. metaphysics
- 4. ruminate 5. educe
- 6. disregard

Usage:

... Never yet had I felt so unhappy, except during three days of sea- sickness at the beginning of my voyage from England. I sat musing and in great melancholy, until Yram made her appearance with light and supper. She too, poor girl, was miserable; for she had heard that I was to leave them. ... - Erewhon

... These they do not openly disregard, for conformity until absolutely intolerable is a law of Ydgrun, yet they have no real belief in the objective existence of beings which so readily explain themselves as abstractions, and whose personality demands a quasi-materialism which it baffles the imagination to realise. - Erewhon LYNCH: Pornosophical philotheology. Metaphysics in Mecklenburgh street! - Ulysses By James Joyce

(Staggering Bob, a whitepolled calf, thrusts a ruminating head with humid nostrils through the foliage.) - Ulysses By James Joyce

The parties concerned, uniting, had increased and multiplied, which being done, offspring produced and educed to maturity, the parties, if not disunited were obliged to reunite for increase and multiplication, which was absurd, to form by reunion the original couple of uniting parties, which was impossible. - Ulysses By James Joyce

Answer

- 1. inconscient
- 2. muse
- metaphysics
 ruminate
- 5. educe
- 6. disregard

Match idioms with their meanings

1. all the same	a. It's too late	
2. That ship has sailed	b. i am very happy to hear this.	
3. get a word in edgewise	c. anyway; nevertheless; nonetheless.	
4. that's music to my ears	d. be able to say something while someone else is talking a lot	

Usage:

'Doctor Strong, of course,' returned the other; 'I call him the old Doctor; it's all the same, you know.' - David Copperfield By Charles Dickens

'You'd better get dressed and come down-stairs and never mind your imaginings,' said Marilla as soon as she could get a word in edgewise. 'Breakfast is waiting Anne Of Green Gables

Answer:

all the same: anyway; nevertheless; nonetheless.

That ship has sailed: It's too late

get a word in edgewise: be able to say something while someone else is talking a lot

Hear and write.

Answer:

If those cows had jumped on me he'd have never got over it."

Solution

If those cows had jumped on me he'd have never got over it."

/ter UsageManager Last Checkpoint; yesterday

32. _problem_number_representations_in_sentences

yter VocabularyManager Last Checkpoint: 8 days/ter EnglishComprehensionManager Last Checkpoint: 3 months ago

obagemanage.	, , ,	
View Run Kernel Settings Help	View Run Kernel Settings Help	View Run Kernel Settings Help
[(□ □ ▶ ■ C → Code ∨	[
ke.printProblemTypes()	ke.printProblemTypes()	,
 problem_correct_common_error _problem_select_correct_sentence _problem_badly_formed_sentences _problem_select_incorrect_sentence _problem_adjective_preposition_pairs _problem_verb_preposition_pairs _problem_verb_phrasal_verb_pairs _problem_yet_or_already _problem_always_or_forever _problem_past_or_participle_verb _problem_improper_article_before_a_noun _problem_quantify_a_noun _problem_let_may_might_can_could_would_should _problem_quantifier_and_relative_words _problem_place_the_adjective _problem_comparative_or_superlative_adjective _problem_form_of_pronoun _problem_something_or_anything _problem_confusing_words _problem_normal_or_wishful _problem_progressive_form _problem_progressive_form _problem_progressive_or_continuos_form 	 problem_english_for_junior_competitions problem_english_toefl_words problem_predict_similar_opposite_words problem_single_word_for_phrase problem_answer_yes_no problem_fill_confusing_words_with_meanings_and_usa problem_fill_misused_word_sets_with_usages problem_fill_misspelled_words problem_fill_homophone_words problem_identify_homophone_words_in_sentences problem_fill_similar_opposite_words problem_fill_weird_words problem_predict_prefixes problem_predict_suffixes problem_predict_word_roots problem_words_related_to_phobia problem_fill_in_with_appropriate_words problem_test_yourself YUCT SpellingManager Last Check View Run Kernel Settings Help © Descriptions	Comprehension Text: Read the following article and answer the questions. The Real Story of the Pied Piper Question: How people remember lost children even today in Bungelosenstrasse? Hamelin was situated in which modern country? What really happened to the children? Is this story a complete fable? Was the pied piper a vengeful person? Which part of the story was an afterthought, rats or children? What is meaning of 'Bungelosenstrasse'? What was the real name of the Pied Piper of Hamelin? Which children survived the piper's revenge?
23problem_uncountable_nouns_ending_in_s 24problem_common_plural_nouns 25problem_irregular_plural_noun_forms		ke.printAnswer()
26problem_extreme_adjectives 27problem_it_or_there 28problem_all_or_with 29problem_which_word_is_more_appropriate 30problem_homophone_words 31problem_number_sinular_or_plural	 problem_random_spellings problem_leading_word_spellings problem_trailing_word_spellings problem_closest_syllables_pairs problem_homophone_words problem_prefixes_word_pairs problem suffixes word pairs 	 According to the story, the children were last seen on one particular street in Hamelin. That street is now kn To this day, no one is allowed to dance or play music on this street. Hamelin was a German town. Historians don't know what happened to the children. The stained glass window that was once in the Hamwith the town's children, but it does not provide details. There are several possibilities: 1. In the year of 1284

8. _problem_confusing_word_pairs

9. _problem_gender_word_pairs 10. _problem_phrases 11. _problem_idioms

12. problem game guess word

- 7. _problem_misspelling_prone_pairs
 - with the town's children, but it does not provide details. There are several possibilities: 1. In the year of 1284 piper, clothed in many kinds of colors, 130 children born in Hamelin were seduced and lost at the place of e: rats prior to the disappearance of the children. 3. Some experts link the loss of the Hamelin children to anoti-

Comprehension to improve English and analytical ability in other subjects

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same,

And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

I shall be telling this with a sigh Somewhere ages and ages hence: Two roads diverged in a wood, and I— I took the one less traveled by, And that has made all the difference. 3

Following the principles of community-based participatory research, tribal nations and research institutions are equal partners in health studies conducted on reservations. A collaboration between the Crow Tribe and Montana State University

______ this model: tribal citizens worked alongside scientists to design the methodology and continue to assist in data collection.

Which choice completes the text with the most logical and precise word or phrase?

- A) circumvents
- B) eclipses
- C) fabricates
- D) exemplifies

4

The parasitic dodder plant increases its reproductive success by flowering at the same time as the host plant it has latched onto. In 2020, Jianqiang Wu and his colleagues determined that the tiny dodder achieves this ______ with its host by absorbing and utilizing a protein the host produces when it is about to flower.

Which choice completes the text with the most logical and precise word or phrase?

- A) synchronization
- B) hibernation
- C) prediction
- D) moderation

- 5

Given that the conditions in binary star systems should make planetary formation nearly impossible, it's not surprising that the existence of planets in such systems has lacked ______ explanation.

Roman Rafikov and Kedron Silsbee shed light on the subject when they used modeling to determine a complex set of factors that could support planets' development.

Which choice completes the text with the most logical and precise word or phrase?

- A) a discernible
- B) a straightforward
- C) an inconclusive
- D) an unbiased

6

Seminole/Muscogee director Sterlin Harjo
________television's tendency to situate Native
characters in the distant past: this rejection is evident
in his series Reservation Dogs, which revolves around
teenagers who dress in contemporary styles and
whose dialogue is laced with current slang.

Which choice completes the text with the most logical and precise word or phrase?

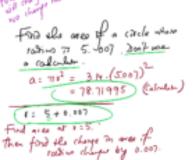
- A) repudiates
- B) proclaims
- C) foretells
- D) recants

16

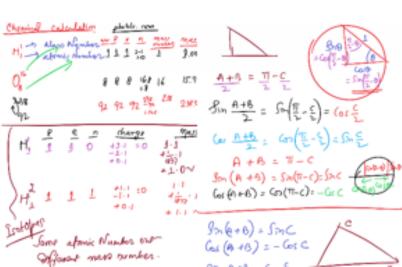
In the mountains of Brazil, Barbacenia tomentosa and Barbacenia macrantha—two plants in the Velloziaceae family—establish themselves on soilless, nutrient-poor patches of quartzite rock. Plant ecologists Anna Abrahão and Patricia de Britto Costa used microscopic analysis to determine that the roots of B. tomentosa and B. macrantha, which grow directly into the quartzite, have clusters of fine hairs near the root tip; further analysis indicated that these hairs secrete both malic and citric acids. The researchers hypothesize that the plants depend on dissolving underlying rock with these acids, as the process not only creates channels for continued growth but also releases phosphates that provide the vital nutrient phosphorus.

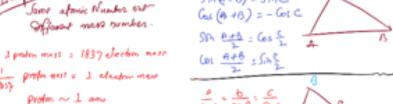
Which finding, if true, would most directly support the researchers' hypothesis?

- A) Other species in the Velloziaceae family are found in terrains with more soil but have root structures similar to those of B. tomentosa and B. macrantha.
- Though B. tomentosa and B. macrantha both secrete citric and malic acids, each species produces the acids in different proportions.
- C) The roots of B. tomentosa and B. macrantha carve new entry points into rocks even when cracks in the surface are readily available.
- B. tomentosa and B. macrantha thrive even when transferred to the surfaces of rocks that do not contain phosphates.

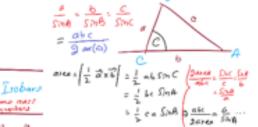

We create notes while teaching. In next few slides, we present a sample of some notes used by him.

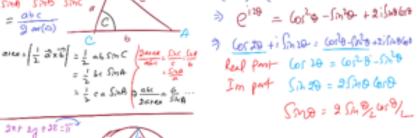
(May not be from) (rue are searing (or geomistance) why do almo from moleculus? 1 9 1 Mar Active Jown merry is a non complex calculation. Schrodingers Repeation It is the probability rawing of deepons and ending thing mater = Energy \circ they fedulm

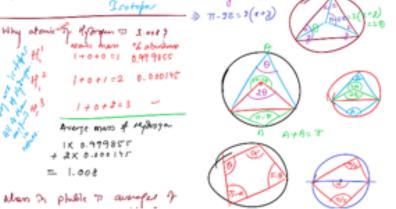

+ potential

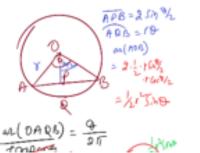


and dies. = 3.14 (5) = 3.14 - 25.4 Now how much ma will chape if rather charges by 0.007 de . Or = da. 0.11)

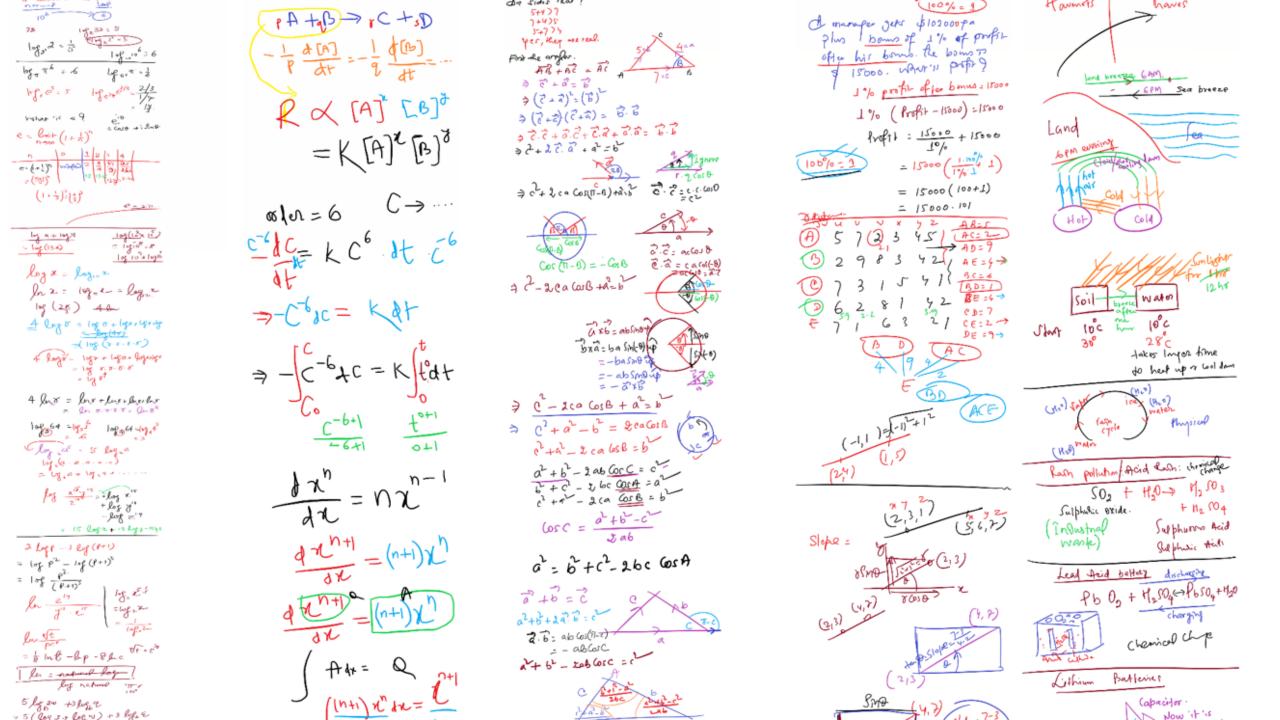

----- 10 - da . 18

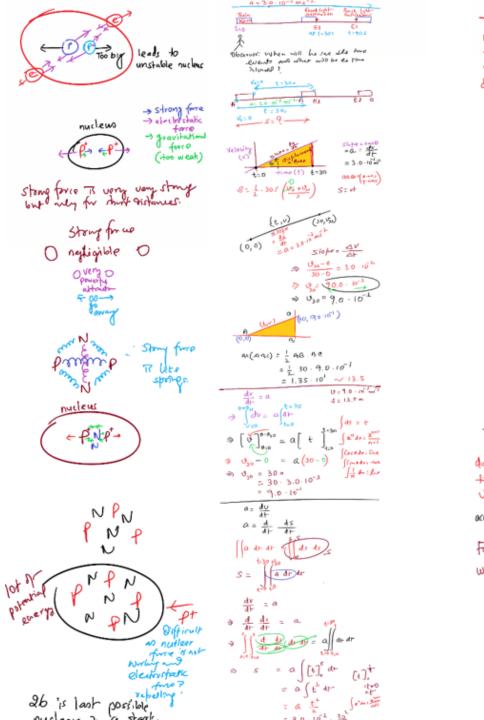


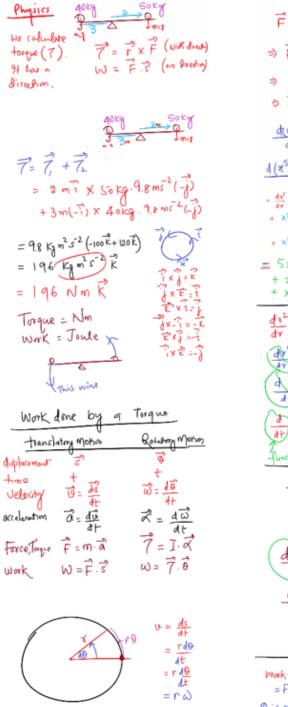


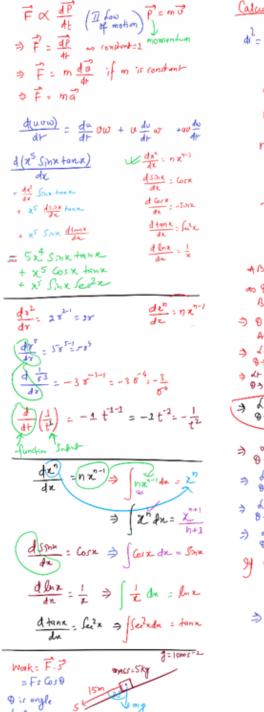

newtra or I amou

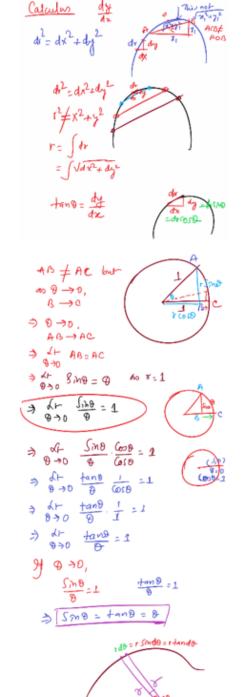
electron ~ 1917 ama


r Costa


au(40AA)=2 au(0PA)

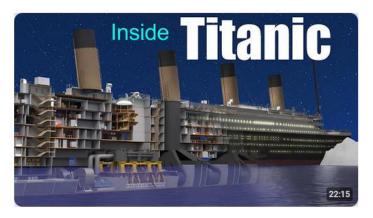

AB=18


= 21 12 %

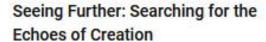

AA

We watch lot of documentaries and videos

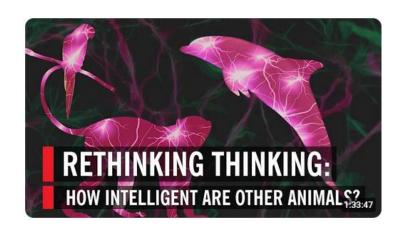
The man who tried to fake an element

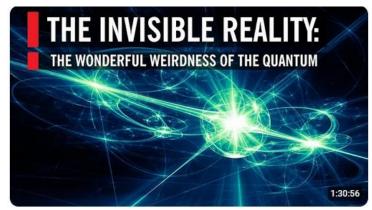


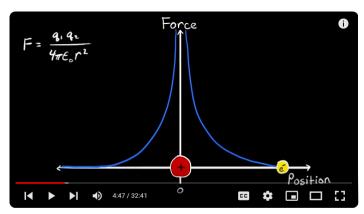
The Man Who Accidentally Killed The Most People In History



How Las Vegas' Sphere Actually Works






The Bogdanoffs: The Trolls who shook Physics

The man who almost faked his way to a Nobel Prize


How Science Harnesses The Incredible Power Of Diamonds | Naked Science |

The Actual Reason Semiconductors Are Different From Conductors and Insulators.

One Hour Of Mind-Blowing Mysteries Of The Atom \mid Full Documentary

Exploring our Mind-Blowing Universe | BBC Earth Science

We had lot of fun too!

This improved his English like never before. He developed skill to read and speak with confidence. Now, he is one in the batch who makes others laugh with his witty comments and jokes.

Game: Read a Joke (Sentences)

CLEAR GRID

Little Ronnie's kindergarten class was on a field trip to their local police station where they saw pictures tacked to a bulletin board of the 10 most wanted criminals. One of the youngsters pointed to a picture and asked if it really was the photo of a wanted person.

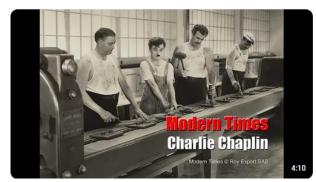
'Yes, ' said the policeman. 'The detectives want very badly to capture him.'

Little Ronnie asked, 'Why didn't you keep him when you took his picture?'

Game: Read a Joke (Sentences)

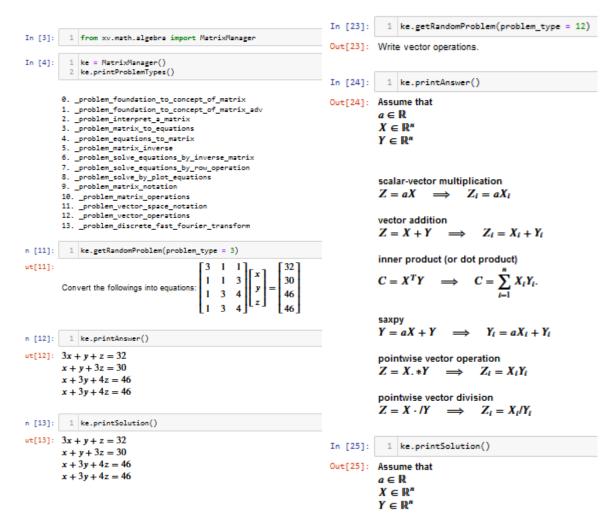
CLEAR GRID

After Sunday church, the priest would hand us each an orange and a big cookie. A little girl once lied and took two oranges, but the priest told her she mustn't lie because God is watching. Then, the girl took two cookies and lied about it. When asked why she had done that, she said because she thought that God was only watching oranges.



We have fun classes once in a while

- We watch funny videos, tell/create funny stories and draw funny cartoons
- They provide them new/alternate perspectives and improves their analytical ability and sense of humor.



Don't forget that everything in this document is two year work of a student.

We have developed our own software to expedite the learning process.

- The user interface is web-based or Jupyter Notebook.
- Jupyter Notebook enhances creativity and facilitates tackling complex topics.
- The content has been designed to facilitate accelerated learning, focusing on interconnected concepts to eliminate the need for
 - rote memorization,
 - homework, and
 - additional practice.

The progress card

 He has already covered advanced topics, instilling in us the confidence to teach him AI/ML programming, which demands a deep understanding of complex mathematics and statistics to comprehend what is happening under the hood.

How many students studying achieve so much elsewhere can achieve so much elsewhere range years?

Please note that we ensured with him too

- No memorization*
- No homework**
- No extra assignments**
- Programming is essential part of learning.

• When someone forgets something, we simply repeat it and this time it takes on tenth of the taken previous time for the same topic.

^{**} Homework kills creativity and analytical ability of students and they are forced to spend their time in doing repetitive and boring assignments.

There is more:

- He is a state-level chess player, aspiring to become a professional chess player.
- SAT goal: 1590+
- This summer, they are learning AI/ML with Python. It will include:
 - scikit-learn
 - TensorFlow
 - PyTorch
 - Classification models
 - Regression models
 - Deep learning models

It's not just him; he's merely an illustrative case.

This isn't an isolated case; it's a typical story for all the students learning with us.

If you feel he is doing great, your kid could be in his place. We don't just cater to grade 9; we teach all school grades and college students. Moreover, we provide training to professionals in advanced science, math, and AI/ML.

Feel free to reach out to us by calling or messaging on WhatsApp at 756993343, or email us at admin@xcelvations.com.

You can also visit our website at http://www.xcelvations.com/ for more information.

