In [1]:
from xv.chemistry.physical import PeriodicTableManager
In [2]:
ke = PeriodicTableManager()
ke
Out[2]:
1988343063408@PeriodicTableManager
Drawing periodic table and other properties of elements
Minimum Grade: 6
Maximum Grade: 12
Examples
--------
ke = ElementsManager()
ke
ke.printProblemTypes()
ke.helpProblemType('PROBLEM_TEMPLATE_NAME')
ke.getRandomProblem()
ke.getRandomProblem(problem_type = 0)
...
ke.printProblem()
ke.printAnswer()
ke.printSolution()
ke.pth #the periodic table helper
ke.pth.elements #the periodic table helper
#to get columns names
ke.pth.get_column_names()
doc_style: xv_doc
Drawing periodic table and other properties of elements
Minimum Grade: 6
Maximum Grade: 12
Examples
--------
ke = ElementsManager()
ke
ke.printProblemTypes()
ke.helpProblemType('PROBLEM_TEMPLATE_NAME')
ke.getRandomProblem()
ke.getRandomProblem(problem_type = 0)
...
ke.printProblem()
ke.printAnswer()
ke.printSolution()
ke.pth #the periodic table helper
ke.pth.elements #the periodic table helper
#to get columns names
ke.pth.get_column_names()
doc_style: xv_doc
In [3]:
ke.printProblemTypes()
0. _problem_electronic_config 1. _problem_draw_periodic_table 2. _problem_list_periodic_table_properties 3. _problem_draw_periodic_table_with_property 4. _problem_periodic_table_liquid 5. _problem_periodic_table_gases 6. _problem_periodic_table_is_radioactive 7. _problem_plot_a_property 8. _problem_atomic_number_vs_atomic_radius 9. _problem_atomic_number_vs_covalent_radius 10. _problem_atomic_number_vs_metallic_radius 11. _problem_atomic_number_vs_atomic_volume 12. _problem_atomic_number_vs_volume_and_density 13. _problem_atomic_number_vs_affinity 14. _problem_atomic_number_vs_gas_basicity 15. _problem_atomic_number_vs_thermal_conductivity 16. _problem_atomic_number_vs_mp_bp 17. _problem_atomic_number_vs_heats 18. _problem_atomic_number_vs_abundance 19. _problem_list_lattice_structure 20. _problem_elements_descriptions
In [4]:
from IPython.display import HTML
n = len(ke._problemTemplates)
max_loop = 1
for j in range(0, max_loop):
for i in range(n):
problem_type = i
display(HTML(f"<h2>problem_type: {problem_type}/{n-1} (loop {j}/{max_loop-1})</h2>"))
ke.getRandomProblem(problem_type = problem_type, verbose = True)
display(ke.printProblem())
display(HTML(f"<h6>Answer:</h6>"))
display(ke.printAnswer())
display(HTML(f"<h6>Solution:</h6>"))
display(ke.printSolution())
pass
problem_type: 0/20 (loop 0/0)
Problem Template: _problem_electronic_config
Write the following for the atom with atomic number 64:
1. Electronic configuration
2. Largest noble gas core
3. Electronic configuration form with noble gas as core
4. Valence electrons
5. Maximum number of shells
6. Last subshell
7. Electronic configurations of its positive ions
8. Electrons per shell
Answer:
Atomic number: 64
Name: Gadolinium
Note:It does not follow Madelung energy ordering rule, also called the n + l rule or aufbau approximation rule.
1. Electronic configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s2
2. Largest noble gas core: Xe: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6
3. Electronic configuration form with noble gas as core: [Xe] 4f7 5d1 6s2
4. Valence electrons: 6s2 4f7 5d1
5. Maximum number of shells: 6
6. Last subshell: $6s^{2}$
7. Electronic configurations of its positive ions:
$Gd^{1+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s1
$Gd^{2+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1
$Gd^{3+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7
$Gd^{4+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f6
$Gd^{5+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f5
$Gd^{6+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f4
$Gd^{7+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f3
$Gd^{8+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f2
$Gd^{9+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f1
$Gd^{10+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6
$Gd^{11+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p5
8. Electrons per shell:
K: 2
L: 8
M: 18
N: 25
O: 9
P: 2
Name: Gadolinium
Note:It does not follow Madelung energy ordering rule, also called the n + l rule or aufbau approximation rule.
1. Electronic configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s2
2. Largest noble gas core: Xe: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6
3. Electronic configuration form with noble gas as core: [Xe] 4f7 5d1 6s2
4. Valence electrons: 6s2 4f7 5d1
5. Maximum number of shells: 6
6. Last subshell: $6s^{2}$
7. Electronic configurations of its positive ions:
$Gd^{1+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s1
$Gd^{2+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1
$Gd^{3+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7
$Gd^{4+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f6
$Gd^{5+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f5
$Gd^{6+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f4
$Gd^{7+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f3
$Gd^{8+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f2
$Gd^{9+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f1
$Gd^{10+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6
$Gd^{11+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p5
8. Electrons per shell:
K: 2
L: 8
M: 18
N: 25
O: 9
P: 2
Solution:
Atomic number: 64
Name: Gadolinium
Note:It does not follow Madelung energy ordering rule, also called the n + l rule or aufbau approximation rule.
1. Electronic configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s2
2. Largest noble gas core: Xe: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6
3. Electronic configuration form with noble gas as core: [Xe] 4f7 5d1 6s2
4. Valence electrons: 6s2 4f7 5d1
5. Maximum number of shells: 6
6. Last subshell: $6s^{2}$
7. Electronic configurations of its positive ions:
$Gd^{1+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s1
$Gd^{2+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1
$Gd^{3+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7
$Gd^{4+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f6
$Gd^{5+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f5
$Gd^{6+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f4
$Gd^{7+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f3
$Gd^{8+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f2
$Gd^{9+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f1
$Gd^{10+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6
$Gd^{11+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p5
8. Electrons per shell:
K: 2
L: 8
M: 18
N: 25
O: 9
P: 2
Name: Gadolinium
Note:It does not follow Madelung energy ordering rule, also called the n + l rule or aufbau approximation rule.
1. Electronic configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s2
2. Largest noble gas core: Xe: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6
3. Electronic configuration form with noble gas as core: [Xe] 4f7 5d1 6s2
4. Valence electrons: 6s2 4f7 5d1
5. Maximum number of shells: 6
6. Last subshell: $6s^{2}$
7. Electronic configurations of its positive ions:
$Gd^{1+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1 6s1
$Gd^{2+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7 5d1
$Gd^{3+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f7
$Gd^{4+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f6
$Gd^{5+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f5
$Gd^{6+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f4
$Gd^{7+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f3
$Gd^{8+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f2
$Gd^{9+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f1
$Gd^{10+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6
$Gd^{11+}$: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p5
8. Electrons per shell:
K: 2
L: 8
M: 18
N: 25
O: 9
P: 2
problem_type: 1/20 (loop 0/0)
Problem Template: _problem_draw_periodic_table
Draw periodic table with atomic_weight
Answer:
Click here to see periodic table.
Solution:
#Code
from bokeh.plotting import output_notebook, output_file, save, show
from mendeleev.fetch import fetch_table
from xv.chemistry.helper._mendeleev_customized import periodic_plot
import os
# output inline
output_notebook()
ptable_elements = fetch_table('elements')
ptable_output = periodic_plot(ptable_elements,
attribute='atomic_weight',
colorby='attribute',
title="atomic_weight"
)
show(ptable_output)
problem_type: 2/20 (loop 0/0)
Problem Template: _problem_list_periodic_table_properties
Define the following periodic table properties:
1. abundance_crust
2. abundance_sea
3. atomic_number
4. atomic_radius
5. atomic_radius_rahm
6. atomic_volume
7. atomic_weight
8. atomic_weight_uncertainty
9. boiling_point
10. c6
11. c6_gb
12. covalent_radius_bragg
13. covalent_radius_cordero
14. covalent_radius_pyykko
15. covalent_radius_pyykko_double
16. covalent_radius_pyykko_triple
17. density
18. dipole_polarizability
19. dipole_polarizability_unc
20. discovery_year
21. electron_affinity
22. en_allen
23. en_ghosh
24. en_pauling
25. evaporation_heat
26. fusion_heat
27. gas_basicity
28. glawe_number
29. group_id
30. heat_of_formation
31. is_radioactive
32. lattice_constant
33. melting_point
34. mendeleev_number
35. metallic_radius
36. metallic_radius_c12
37. molar_heat_capacity
38. period
39. pettifor_number
40. proton_affinity
41. series_id
42. specific_heat_capacity
43. thermal_conductivity
44. vdw_radius
45. vdw_radius_alvarez
46. vdw_radius_batsanov
47. vdw_radius_bondi
48. vdw_radius_dreiding
49. vdw_radius_mm3
50. vdw_radius_rt
51. vdw_radius_truhlar
52. vdw_radius_uff
Answer:
1. abundance_crust: Abundance in the Earth’s crust (mg/kg)
2. abundance_sea: Abundance in the seas (mg/L)
3. atomic_number: Atomic number
4. atomic_radius: Atomic radius (pm)
5. atomic_radius_rahm: Atomic radius by Rahm et al. (pm)
6. atomic_volume: Atomic volume (cm3/mol)
7. atomic_weight: Atomic weight1
8. atomic_weight_uncertainty: Atomic weight uncertainty1
9. boiling_point: Boiling temperature (K)
10. c6: C_6 dispersion coefficient in a.u. (a.u.)
11. c6_gb: C_6 dispersion coefficient in a.u. (Gould & Bučko) (a.u.)
12. covalent_radius_bragg: Covalent radius by Bragg (pm)
13. covalent_radius_cordero: Covalent radius by Cerdero et al.2 (pm)
14. covalent_radius_pyykko: Single bond covalent radius by Pyykko et al. (pm)
15. covalent_radius_pyykko_double: Double bond covalent radius by Pyykko et al. (pm)
16. covalent_radius_pyykko_triple: Triple bond covalent radius by Pyykko et al. (pm)
17. density: Density at 295K (g/cm3)
18. dipole_polarizability: Dipole polarizability (a.u.)
19. dipole_polarizability_unc: Dipole polarizability uncertainty (a.u.)
20. discovery_year
21. electron_affinity: Electron affinity3 (eV)
22. en_allen: Allen’s scale of electronegativity4 (eV)
23. en_ghosh: Ghosh’s scale of electronegativity
24. en_pauling: Pauling’s scale of electronegativity
25. evaporation_heat: Evaporation heat (kJ/mol)
26. fusion_heat: Fusion heat (kJ/mol)
27. gas_basicity: Gas basicity (kJ/mol)
28. glawe_number: Glawe’s number (scale)
29. group_id
30. heat_of_formation: Heat of formation (kJ/mol)
31. is_radioactive: Is the element radioactive
32. lattice_constant: Lattice constant (Angstrom)
33. melting_point: Melting temperature (K)
34. mendeleev_number: Mendeleev’s number5
35. metallic_radius: Single-bond metallic radius (pm)
36. metallic_radius_c12: Metallic radius with 12 nearest neighbors (pm)
37. molar_heat_capacity
38. period: Period in periodic table
39. pettifor_number: Pettifor scale
40. proton_affinity: Proton affinity (kJ/mol)
41. series_id
42. specific_heat_capacity
43. thermal_conductivity: Thermal conductivity @25 C (W/(m K))
44. vdw_radius: Van der Waals radius (pm)
45. vdw_radius_alvarez: Van der Waals radius according to Alvarez7 (pm)
46. vdw_radius_batsanov: Van der Waals radius according to Batsanov (pm)
47. vdw_radius_bondi: Van der Waals radius according to Bondi (pm)
48. vdw_radius_dreiding: Van der Waals radius from the DREIDING FF (pm)
49. vdw_radius_mm3: Van der Waals radius from the MM3 FF (pm)
50. vdw_radius_rt: Van der Waals radius according to Rowland and Taylor (pm)
51. vdw_radius_truhlar: Van der Waals radius according to Truhlar (pm)
52. vdw_radius_uff: Van der Waals radius from the UFF (pm)
2. abundance_sea: Abundance in the seas (mg/L)
3. atomic_number: Atomic number
4. atomic_radius: Atomic radius (pm)
5. atomic_radius_rahm: Atomic radius by Rahm et al. (pm)
6. atomic_volume: Atomic volume (cm3/mol)
7. atomic_weight: Atomic weight1
8. atomic_weight_uncertainty: Atomic weight uncertainty1
9. boiling_point: Boiling temperature (K)
10. c6: C_6 dispersion coefficient in a.u. (a.u.)
11. c6_gb: C_6 dispersion coefficient in a.u. (Gould & Bučko) (a.u.)
12. covalent_radius_bragg: Covalent radius by Bragg (pm)
13. covalent_radius_cordero: Covalent radius by Cerdero et al.2 (pm)
14. covalent_radius_pyykko: Single bond covalent radius by Pyykko et al. (pm)
15. covalent_radius_pyykko_double: Double bond covalent radius by Pyykko et al. (pm)
16. covalent_radius_pyykko_triple: Triple bond covalent radius by Pyykko et al. (pm)
17. density: Density at 295K (g/cm3)
18. dipole_polarizability: Dipole polarizability (a.u.)
19. dipole_polarizability_unc: Dipole polarizability uncertainty (a.u.)
20. discovery_year
21. electron_affinity: Electron affinity3 (eV)
22. en_allen: Allen’s scale of electronegativity4 (eV)
23. en_ghosh: Ghosh’s scale of electronegativity
24. en_pauling: Pauling’s scale of electronegativity
25. evaporation_heat: Evaporation heat (kJ/mol)
26. fusion_heat: Fusion heat (kJ/mol)
27. gas_basicity: Gas basicity (kJ/mol)
28. glawe_number: Glawe’s number (scale)
29. group_id
30. heat_of_formation: Heat of formation (kJ/mol)
31. is_radioactive: Is the element radioactive
32. lattice_constant: Lattice constant (Angstrom)
33. melting_point: Melting temperature (K)
34. mendeleev_number: Mendeleev’s number5
35. metallic_radius: Single-bond metallic radius (pm)
36. metallic_radius_c12: Metallic radius with 12 nearest neighbors (pm)
37. molar_heat_capacity
38. period: Period in periodic table
39. pettifor_number: Pettifor scale
40. proton_affinity: Proton affinity (kJ/mol)
41. series_id
42. specific_heat_capacity
43. thermal_conductivity: Thermal conductivity @25 C (W/(m K))
44. vdw_radius: Van der Waals radius (pm)
45. vdw_radius_alvarez: Van der Waals radius according to Alvarez7 (pm)
46. vdw_radius_batsanov: Van der Waals radius according to Batsanov (pm)
47. vdw_radius_bondi: Van der Waals radius according to Bondi (pm)
48. vdw_radius_dreiding: Van der Waals radius from the DREIDING FF (pm)
49. vdw_radius_mm3: Van der Waals radius from the MM3 FF (pm)
50. vdw_radius_rt: Van der Waals radius according to Rowland and Taylor (pm)
51. vdw_radius_truhlar: Van der Waals radius according to Truhlar (pm)
52. vdw_radius_uff: Van der Waals radius from the UFF (pm)
Solution:
1. abundance_crust: Abundance in the Earth’s crust (mg/kg)
2. abundance_sea: Abundance in the seas (mg/L)
3. atomic_number: Atomic number
4. atomic_radius: Atomic radius (pm)
5. atomic_radius_rahm: Atomic radius by Rahm et al. (pm)
6. atomic_volume: Atomic volume (cm3/mol)
7. atomic_weight: Atomic weight1
8. atomic_weight_uncertainty: Atomic weight uncertainty1
9. boiling_point: Boiling temperature (K)
10. c6: C_6 dispersion coefficient in a.u. (a.u.)
11. c6_gb: C_6 dispersion coefficient in a.u. (Gould & Bučko) (a.u.)
12. covalent_radius_bragg: Covalent radius by Bragg (pm)
13. covalent_radius_cordero: Covalent radius by Cerdero et al.2 (pm)
14. covalent_radius_pyykko: Single bond covalent radius by Pyykko et al. (pm)
15. covalent_radius_pyykko_double: Double bond covalent radius by Pyykko et al. (pm)
16. covalent_radius_pyykko_triple: Triple bond covalent radius by Pyykko et al. (pm)
17. density: Density at 295K (g/cm3)
18. dipole_polarizability: Dipole polarizability (a.u.)
19. dipole_polarizability_unc: Dipole polarizability uncertainty (a.u.)
20. discovery_year
21. electron_affinity: Electron affinity3 (eV)
22. en_allen: Allen’s scale of electronegativity4 (eV)
23. en_ghosh: Ghosh’s scale of electronegativity
24. en_pauling: Pauling’s scale of electronegativity
25. evaporation_heat: Evaporation heat (kJ/mol)
26. fusion_heat: Fusion heat (kJ/mol)
27. gas_basicity: Gas basicity (kJ/mol)
28. glawe_number: Glawe’s number (scale)
29. group_id
30. heat_of_formation: Heat of formation (kJ/mol)
31. is_radioactive: Is the element radioactive
32. lattice_constant: Lattice constant (Angstrom)
33. melting_point: Melting temperature (K)
34. mendeleev_number: Mendeleev’s number5
35. metallic_radius: Single-bond metallic radius (pm)
36. metallic_radius_c12: Metallic radius with 12 nearest neighbors (pm)
37. molar_heat_capacity
38. period: Period in periodic table
39. pettifor_number: Pettifor scale
40. proton_affinity: Proton affinity (kJ/mol)
41. series_id
42. specific_heat_capacity
43. thermal_conductivity: Thermal conductivity @25 C (W/(m K))
44. vdw_radius: Van der Waals radius (pm)
45. vdw_radius_alvarez: Van der Waals radius according to Alvarez7 (pm)
46. vdw_radius_batsanov: Van der Waals radius according to Batsanov (pm)
47. vdw_radius_bondi: Van der Waals radius according to Bondi (pm)
48. vdw_radius_dreiding: Van der Waals radius from the DREIDING FF (pm)
49. vdw_radius_mm3: Van der Waals radius from the MM3 FF (pm)
50. vdw_radius_rt: Van der Waals radius according to Rowland and Taylor (pm)
51. vdw_radius_truhlar: Van der Waals radius according to Truhlar (pm)
52. vdw_radius_uff: Van der Waals radius from the UFF (pm)
2. abundance_sea: Abundance in the seas (mg/L)
3. atomic_number: Atomic number
4. atomic_radius: Atomic radius (pm)
5. atomic_radius_rahm: Atomic radius by Rahm et al. (pm)
6. atomic_volume: Atomic volume (cm3/mol)
7. atomic_weight: Atomic weight1
8. atomic_weight_uncertainty: Atomic weight uncertainty1
9. boiling_point: Boiling temperature (K)
10. c6: C_6 dispersion coefficient in a.u. (a.u.)
11. c6_gb: C_6 dispersion coefficient in a.u. (Gould & Bučko) (a.u.)
12. covalent_radius_bragg: Covalent radius by Bragg (pm)
13. covalent_radius_cordero: Covalent radius by Cerdero et al.2 (pm)
14. covalent_radius_pyykko: Single bond covalent radius by Pyykko et al. (pm)
15. covalent_radius_pyykko_double: Double bond covalent radius by Pyykko et al. (pm)
16. covalent_radius_pyykko_triple: Triple bond covalent radius by Pyykko et al. (pm)
17. density: Density at 295K (g/cm3)
18. dipole_polarizability: Dipole polarizability (a.u.)
19. dipole_polarizability_unc: Dipole polarizability uncertainty (a.u.)
20. discovery_year
21. electron_affinity: Electron affinity3 (eV)
22. en_allen: Allen’s scale of electronegativity4 (eV)
23. en_ghosh: Ghosh’s scale of electronegativity
24. en_pauling: Pauling’s scale of electronegativity
25. evaporation_heat: Evaporation heat (kJ/mol)
26. fusion_heat: Fusion heat (kJ/mol)
27. gas_basicity: Gas basicity (kJ/mol)
28. glawe_number: Glawe’s number (scale)
29. group_id
30. heat_of_formation: Heat of formation (kJ/mol)
31. is_radioactive: Is the element radioactive
32. lattice_constant: Lattice constant (Angstrom)
33. melting_point: Melting temperature (K)
34. mendeleev_number: Mendeleev’s number5
35. metallic_radius: Single-bond metallic radius (pm)
36. metallic_radius_c12: Metallic radius with 12 nearest neighbors (pm)
37. molar_heat_capacity
38. period: Period in periodic table
39. pettifor_number: Pettifor scale
40. proton_affinity: Proton affinity (kJ/mol)
41. series_id
42. specific_heat_capacity
43. thermal_conductivity: Thermal conductivity @25 C (W/(m K))
44. vdw_radius: Van der Waals radius (pm)
45. vdw_radius_alvarez: Van der Waals radius according to Alvarez7 (pm)
46. vdw_radius_batsanov: Van der Waals radius according to Batsanov (pm)
47. vdw_radius_bondi: Van der Waals radius according to Bondi (pm)
48. vdw_radius_dreiding: Van der Waals radius from the DREIDING FF (pm)
49. vdw_radius_mm3: Van der Waals radius from the MM3 FF (pm)
50. vdw_radius_rt: Van der Waals radius according to Rowland and Taylor (pm)
51. vdw_radius_truhlar: Van der Waals radius according to Truhlar (pm)
52. vdw_radius_uff: Van der Waals radius from the UFF (pm)
problem_type: 3/20 (loop 0/0)
Problem Template: _problem_draw_periodic_table_with_property
Draw periodic table of elements with boiling_point.
Note:
1. You can use option column_name = 'column name' to get a getRandomProblem
2. To get columns available, use code:
ke.pth.get_column_names()
Note:
1. You can use option column_name = 'column name' to get a getRandomProblem
2. To get columns available, use code:
ke.pth.get_column_names()
Answer:
Click here to see periodic table.
Solution:
#Code
from bokeh.plotting import output_notebook, output_file, save, show
from mendeleev.fetch import fetch_table
from xv.chemistry.helper._mendeleev_customized import periodic_plot
import os
# output inline
output_notebook()
ptable_elements = fetch_table('elements')
ptable_output = periodic_plot(ptable_elements,
attribute='boiling_point',
colorby='attribute',
title="boiling_point"
)
show(ptable_output)
List of columns
1. abundance_crust: Abundance in the Earth’s crust (mg/kg)
2. abundance_sea: Abundance in the seas (mg/L)
3. atomic_number: Atomic number
4. atomic_radius: Atomic radius (pm)
5. atomic_radius_rahm: Atomic radius by Rahm et al. (pm)
6. atomic_volume: Atomic volume (cm3/mol)
7. atomic_weight: Atomic weight1
8. atomic_weight_uncertainty: Atomic weight uncertainty1
9. boiling_point: Boiling temperature (K)
10. c6: C_6 dispersion coefficient in a.u. (a.u.)
11. c6_gb: C_6 dispersion coefficient in a.u. (Gould & Bučko) (a.u.)
12. covalent_radius_bragg: Covalent radius by Bragg (pm)
13. covalent_radius_cordero: Covalent radius by Cerdero et al.2 (pm)
14. covalent_radius_pyykko: Single bond covalent radius by Pyykko et al. (pm)
15. covalent_radius_pyykko_double: Double bond covalent radius by Pyykko et al. (pm)
16. covalent_radius_pyykko_triple: Triple bond covalent radius by Pyykko et al. (pm)
17. density: Density at 295K (g/cm3)
18. dipole_polarizability: Dipole polarizability (a.u.)
19. dipole_polarizability_unc: Dipole polarizability uncertainty (a.u.)
20. discovery_year
21. electron_affinity: Electron affinity3 (eV)
22. en_allen: Allen’s scale of electronegativity4 (eV)
23. en_ghosh: Ghosh’s scale of electronegativity
24. en_pauling: Pauling’s scale of electronegativity
25. evaporation_heat: Evaporation heat (kJ/mol)
26. fusion_heat: Fusion heat (kJ/mol)
27. gas_basicity: Gas basicity (kJ/mol)
28. glawe_number: Glawe’s number (scale)
29. group_id
30. heat_of_formation: Heat of formation (kJ/mol)
31. is_radioactive: Is the element radioactive
32. lattice_constant: Lattice constant (Angstrom)
33. melting_point: Melting temperature (K)
34. mendeleev_number: Mendeleev’s number5
35. metallic_radius: Single-bond metallic radius (pm)
36. metallic_radius_c12: Metallic radius with 12 nearest neighbors (pm)
37. molar_heat_capacity
38. period: Period in periodic table
39. pettifor_number: Pettifor scale
40. proton_affinity: Proton affinity (kJ/mol)
41. series_id
42. specific_heat_capacity
43. thermal_conductivity: Thermal conductivity @25 C (W/(m K))
44. vdw_radius: Van der Waals radius (pm)
45. vdw_radius_alvarez: Van der Waals radius according to Alvarez7 (pm)
46. vdw_radius_batsanov: Van der Waals radius according to Batsanov (pm)
47. vdw_radius_bondi: Van der Waals radius according to Bondi (pm)
48. vdw_radius_dreiding: Van der Waals radius from the DREIDING FF (pm)
49. vdw_radius_mm3: Van der Waals radius from the MM3 FF (pm)
50. vdw_radius_rt: Van der Waals radius according to Rowland and Taylor (pm)
51. vdw_radius_truhlar: Van der Waals radius according to Truhlar (pm)
52. vdw_radius_uff: Van der Waals radius from the UFF (pm)
problem_type: 4/20 (loop 0/0)
Problem Template: _problem_periodic_table_liquid
Draw periodic table of elements and identify liquids.
Answer:
Click here to see periodic table.
The liquids melt below the normal temperature 300K but do not boil to become gases.
There are two elements whose melting points are below 300K
but boiling point above 300K:
The liquids melt below the normal temperature 300K but do not boil to become gases.
There are two elements whose melting points are below 300K
but boiling point above 300K:
symbol | name | melting_point | boiling_point | |
---|---|---|---|---|
atomic_number | ||||
35 | Br | Bromine | 265.90 | 331.90 |
80 | Hg | Mercury | 234.28 | 629.73 |
Solution:
The liquids melt below the normal temperature 300K but do not boil to become gases.
There are two elements whose melting points are below 300K
but boiling point above 300K:
Bokeh Plot
There are two elements whose melting points are below 300K
but boiling point above 300K:
symbol | name | melting_point | boiling_point | |
---|---|---|---|---|
atomic_number | ||||
35 | Br | Bromine | 265.90 | 331.90 |
80 | Hg | Mercury | 234.28 | 629.73 |
#Code
from bokeh.plotting import output_notebook, output_file, save, show
from mendeleev.fetch import fetch_table
from xv.chemistry.helper._mendeleev_customized import periodic_plot
import os
# output inline
output_notebook()
ptable_elements = fetch_table('elements')
ptable_output = periodic_plot(ptable_elements,
attribute='melting_point',
colorby='attribute',
title="melting_point"
)
show(ptable_output)
problem_type: 5/20 (loop 0/0)
Problem Template: _problem_periodic_table_gases
Draw periodic table of elements and identify gases.
Answer:
Click here to see periodic table.
The gases boil below the normal temperature 300K and turn into gaseous state.
These are the elements whose boling points are below 300K:
The gases boil below the normal temperature 300K and turn into gaseous state.
These are the elements whose boling points are below 300K:
symbol | name | boiling_point | |
---|---|---|---|
atomic_number | |||
1 | H | Hydrogen | 20.280 |
2 | He | Helium | 4.216 |
7 | N | Nitrogen | 77.400 |
8 | O | Oxygen | 90.190 |
9 | F | Fluorine | 85.010 |
10 | Ne | Neon | 27.100 |
17 | Cl | Chlorine | 238.600 |
18 | Ar | Argon | 87.300 |
36 | Kr | Krypton | 120.850 |
54 | Xe | Xenon | 166.100 |
86 | Rn | Radon | 211.400 |
Solution:
The gases boil below the normal temperature 300K and turn into gaseous state.
These are the elements whose boling points are below 300K:
Bokeh Plot
These are the elements whose boling points are below 300K:
symbol | name | boiling_point | |
---|---|---|---|
atomic_number | |||
1 | H | Hydrogen | 20.280 |
2 | He | Helium | 4.216 |
7 | N | Nitrogen | 77.400 |
8 | O | Oxygen | 90.190 |
9 | F | Fluorine | 85.010 |
10 | Ne | Neon | 27.100 |
17 | Cl | Chlorine | 238.600 |
18 | Ar | Argon | 87.300 |
36 | Kr | Krypton | 120.850 |
54 | Xe | Xenon | 166.100 |
86 | Rn | Radon | 211.400 |
#Code
from bokeh.plotting import output_notebook, output_file, save, show
from mendeleev.fetch import fetch_table
from xv.chemistry.helper._mendeleev_customized import periodic_plot
import os
# output inline
output_notebook()
ptable_elements = fetch_table('elements')
ptable_output = periodic_plot(ptable_elements,
attribute='boiling_point',
colorby='attribute',
title="boiling_point"
)
show(ptable_output)
problem_type: 6/20 (loop 0/0)
Problem Template: _problem_periodic_table_is_radioactive
Draw periodic table of elements and radioactive elements.
Answer:
Click here to see periodic table.
The gases boil below the normal temperature 300K and turn into gaseous state.
These are the elements whose boling points are below 300K:
The gases boil below the normal temperature 300K and turn into gaseous state.
These are the elements whose boling points are below 300K:
symbol | name | is_radioactive | |
---|---|---|---|
atomic_number | |||
43 | Tc | Technetium | True |
61 | Pm | Promethium | True |
84 | Po | Polonium | True |
85 | At | Astatine | True |
86 | Rn | Radon | True |
87 | Fr | Francium | True |
88 | Ra | Radium | True |
89 | Ac | Actinium | True |
90 | Th | Thorium | True |
91 | Pa | Protactinium | True |
92 | U | Uranium | True |
93 | Np | Neptunium | True |
94 | Pu | Plutonium | True |
95 | Am | Americium | True |
96 | Cm | Curium | True |
97 | Bk | Berkelium | True |
98 | Cf | Californium | True |
99 | Es | Einsteinium | True |
100 | Fm | Fermium | True |
101 | Md | Mendelevium | True |
102 | No | Nobelium | True |
103 | Lr | Lawrencium | True |
104 | Rf | Rutherfordium | True |
105 | Db | Dubnium | True |
106 | Sg | Seaborgium | True |
107 | Bh | Bohrium | True |
108 | Hs | Hassium | True |
109 | Mt | Meitnerium | True |
110 | Ds | Darmstadtium | True |
111 | Rg | Roentgenium | True |
112 | Cn | Copernicium | True |
113 | Nh | Nihonium | True |
114 | Fl | Flerovium | True |
115 | Mc | Moscovium | True |
116 | Lv | Livermorium | True |
117 | Ts | Tennessine | True |
118 | Og | Oganesson | True |
Solution:
The gases boil below the normal temperature 300K and turn into gaseous state.
These are the elements whose boling points are below 300K:
Bokeh Plot
These are the elements whose boling points are below 300K:
symbol | name | is_radioactive | |
---|---|---|---|
atomic_number | |||
43 | Tc | Technetium | True |
61 | Pm | Promethium | True |
84 | Po | Polonium | True |
85 | At | Astatine | True |
86 | Rn | Radon | True |
87 | Fr | Francium | True |
88 | Ra | Radium | True |
89 | Ac | Actinium | True |
90 | Th | Thorium | True |
91 | Pa | Protactinium | True |
92 | U | Uranium | True |
93 | Np | Neptunium | True |
94 | Pu | Plutonium | True |
95 | Am | Americium | True |
96 | Cm | Curium | True |
97 | Bk | Berkelium | True |
98 | Cf | Californium | True |
99 | Es | Einsteinium | True |
100 | Fm | Fermium | True |
101 | Md | Mendelevium | True |
102 | No | Nobelium | True |
103 | Lr | Lawrencium | True |
104 | Rf | Rutherfordium | True |
105 | Db | Dubnium | True |
106 | Sg | Seaborgium | True |
107 | Bh | Bohrium | True |
108 | Hs | Hassium | True |
109 | Mt | Meitnerium | True |
110 | Ds | Darmstadtium | True |
111 | Rg | Roentgenium | True |
112 | Cn | Copernicium | True |
113 | Nh | Nihonium | True |
114 | Fl | Flerovium | True |
115 | Mc | Moscovium | True |
116 | Lv | Livermorium | True |
117 | Ts | Tennessine | True |
118 | Og | Oganesson | True |
#Code
from bokeh.plotting import output_notebook, output_file, save, show
from mendeleev.fetch import fetch_table
from xv.chemistry.helper._mendeleev_customized import periodic_plot
import os
# output inline
output_notebook()
ptable_elements = fetch_table('elements')
ptable_output = periodic_plot(ptable_elements,
attribute='is_radioactive',
colorby='attribute',
title="is_radioactive"
)
show(ptable_output)
problem_type: 7/20 (loop 0/0)
Problem Template: _problem_plot_a_property
Plot a graph of atomic_number vs atomic_weight of elements.
Answer:
Solution:
Optional Input Parameters
x_column and y_column
'annotation', 'atomic_number', 'atomic_radius', 'atomic_volume', 'block', 'boiling_point', 'density', 'description', 'dipole_polarizability', 'electron_affinity', 'electronic_configuration', 'evaporation_heat', 'fusion_heat', 'group_id', 'lattice_constant', 'lattice_structure', 'melting_point', 'name', 'period', 'series_id', 'specific_heat_capacity', 'symbol', 'thermal_conductivity', 'vdw_radius', 'covalent_radius_cordero', 'covalent_radius_pyykko', 'en_pauling', 'en_allen', 'jmol_color', 'cpk_color', 'proton_affinity', 'gas_basicity', 'heat_of_formation', 'c6', 'covalent_radius_bragg', 'vdw_radius_bondi', 'vdw_radius_truhlar', 'vdw_radius_rt', 'vdw_radius_batsanov', 'vdw_radius_dreiding', 'vdw_radius_uff', 'vdw_radius_mm3', 'abundance_crust', 'abundance_sea', 'molcas_gv_color', 'en_ghosh', 'vdw_radius_alvarez', 'c6_gb', 'atomic_weight', 'atomic_weight_uncertainty', 'is_monoisotopic', 'is_radioactive', 'cas', 'atomic_radius_rahm', 'geochemical_class', 'goldschmidt_class', 'metallic_radius', 'metallic_radius_c12', 'covalent_radius_pyykko_double', 'covalent_radius_pyykko_triple', 'discoverers', 'discovery_year', 'discovery_location', 'name_origin', 'sources', 'uses', 'mendeleev_number', 'dipole_polarizability_unc', 'pettifor_number', 'glawe_number', 'molar_heat_capacity', 'group_symbol', 'group_name'
blocks
a list of one or more values from ['s', 'p', 'd', 'f']
group_ids
a list of one or more values from 1 to 17
series_ids
a list of one or more values from 1 to 10
start_atomic_number
Value from 1 to 118
end_atomic_number
Value from 1 to 118
symbol | atomic_weight | atomic_weight_uncertainty | electronic_configuration | |
---|---|---|---|---|
atomic_number | ||||
1 | H | 1.008000 | NaN | 1s |
2 | He | 4.002602 | 2.000000e-06 | 1s2 |
3 | Li | 6.940000 | NaN | [He] 2s |
4 | Be | 9.012183 | 5.000000e-07 | [He] 2s2 |
5 | B | 10.810000 | NaN | [He] 2s2 2p |
6 | C | 12.011000 | NaN | [He] 2s2 2p2 |
7 | N | 14.007000 | NaN | [He] 2s2 2p3 |
8 | O | 15.999000 | NaN | [He] 2s2 2p4 |
9 | F | 18.998403 | 6.000000e-09 | [He] 2s2 2p5 |
10 | Ne | 20.179700 | 6.000000e-04 | [He] 2s2 2p6 |
11 | Na | 22.989769 | 2.000000e-08 | [Ne] 3s |
12 | Mg | 24.305000 | NaN | [Ne] 3s2 |
13 | Al | 26.981538 | 7.000000e-07 | [Ne] 3s2 3p |
14 | Si | 28.085000 | NaN | [Ne] 3s2 3p2 |
15 | P | 30.973762 | 5.000000e-09 | [Ne] 3s2 3p3 |
16 | S | 32.060000 | NaN | [Ne] 3s2 3p4 |
17 | Cl | 35.450000 | NaN | [Ne] 3s2 3p5 |
18 | Ar | 39.948000 | 1.000000e-03 | [Ne] 3s2 3p6 |
19 | K | 39.098300 | 1.000000e-04 | [Ar] 4s |
20 | Ca | 40.078000 | 4.000000e-03 | [Ar] 4s2 |
21 | Sc | 44.955908 | 5.000000e-06 | [Ar] 3d 4s2 |
22 | Ti | 47.867000 | 1.000000e-03 | [Ar] 3d2 4s2 |
23 | V | 50.941500 | 1.000000e-04 | [Ar] 3d3 4s2 |
24 | Cr | 51.996100 | 6.000000e-04 | [Ar] 3d5 4s |
25 | Mn | 54.938044 | 3.000000e-06 | [Ar] 3d5 4s2 |
26 | Fe | 55.845000 | 2.000000e-03 | [Ar] 3d6 4s2 |
27 | Co | 58.933194 | 4.000000e-06 | [Ar] 3d7 4s2 |
28 | Ni | 58.693400 | 4.000000e-04 | [Ar] 3d8 4s2 |
29 | Cu | 63.546000 | 3.000000e-03 | [Ar] 3d10 4s |
30 | Zn | 65.380000 | 2.000000e-02 | [Ar] 3d10 4s2 |
31 | Ga | 69.723000 | 1.000000e-03 | [Ar] 3d10 4s2 4p |
32 | Ge | 72.630000 | 8.000000e-03 | [Ar] 3d10 4s2 4p2 |
33 | As | 74.921595 | 6.000000e-06 | [Ar] 3d10 4s2 4p3 |
34 | Se | 78.971000 | 8.000000e-03 | [Ar] 3d10 4s2 4p4 |
35 | Br | 79.904000 | NaN | [Ar] 3d10 4s2 4p5 |
36 | Kr | 83.798000 | 2.000000e-03 | [Ar] 3d10 4s2 4p6 |
37 | Rb | 85.467800 | 3.000000e-04 | [Kr] 5s |
38 | Sr | 87.620000 | 1.000000e-02 | [Kr] 5s2 |
39 | Y | 88.905840 | 2.000000e-05 | [Kr] 4d 5s2 |
40 | Zr | 91.224000 | 2.000000e-03 | [Kr] 4d2 5s2 |
41 | Nb | 92.906370 | 2.000000e-05 | [Kr] 4d4 5s |
42 | Mo | 95.950000 | 1.000000e-02 | [Kr] 4d5 5s |
43 | Tc | 97.907210 | 3.000000e-05 | [Kr] 4d5 5s2 |
44 | Ru | 101.070000 | 2.000000e-02 | [Kr] 4d7 5s |
45 | Rh | 102.905500 | 2.000000e-05 | [Kr] 4d8 5s |
46 | Pd | 106.420000 | 1.000000e-02 | [Kr] 4d10 |
47 | Ag | 107.868200 | 2.000000e-04 | [Kr] 4d10 5s |
48 | Cd | 112.414000 | 4.000000e-03 | [Kr] 4d10 5s2 |
49 | In | 114.818000 | 1.000000e-03 | [Kr] 4d10 5s2 5p |
50 | Sn | 118.710000 | 7.000000e-03 | [Kr] 4d10 5s2 5p2 |
51 | Sb | 121.760000 | 1.000000e-03 | [Kr] 4d10 5s2 5p3 |
52 | Te | 127.600000 | 3.000000e-02 | [Kr] 4d10 5s2 5p4 |
53 | I | 126.904470 | 3.000000e-05 | [Kr] 4d10 5s2 5p5 |
54 | Xe | 131.293000 | 6.000000e-03 | [Kr] 4d10 5s2 5p6 |
55 | Cs | 132.905452 | 6.000000e-08 | [Xe] 6s |
56 | Ba | 137.327000 | 7.000000e-03 | [Xe] 6s2 |
57 | La | 138.905470 | 7.000000e-05 | [Xe] 5d 6s2 |
58 | Ce | 140.116000 | 1.000000e-03 | [Xe] 4f 5d 6s2 |
59 | Pr | 140.907660 | 2.000000e-05 | [Xe] 4f3 6s2 |
60 | Nd | 144.242000 | 3.000000e-03 | [Xe] 4f4 6s2 |
61 | Pm | 144.912760 | 2.000000e-05 | [Xe] 4f5 6s2 |
62 | Sm | 150.360000 | 2.000000e-02 | [Xe] 4f6 6s2 |
63 | Eu | 151.964000 | 1.000000e-03 | [Xe] 4f7 6s2 |
64 | Gd | 157.250000 | 3.000000e-02 | [Xe] 4f7 5d 6s2 |
65 | Tb | 158.925350 | 2.000000e-05 | [Xe] 4f9 6s2 |
66 | Dy | 162.500000 | 1.000000e-03 | [Xe] 4f10 6s2 |
67 | Ho | 164.930330 | 2.000000e-05 | [Xe] 4f11 6s2 |
68 | Er | 167.259000 | 3.000000e-03 | [Xe] 4f12 6s2 |
69 | Tm | 168.934220 | 2.000000e-05 | [Xe] 4f13 6s2 |
70 | Yb | 173.045000 | 1.000000e-02 | [Xe] 4f14 6s2 |
71 | Lu | 174.966800 | 1.000000e-04 | [Xe] 4f14 5d 6s2 |
72 | Hf | 178.490000 | 2.000000e-02 | [Xe] 4f14 5d2 6s2 |
73 | Ta | 180.947880 | 2.000000e-05 | [Xe] 4f14 5d3 6s2 |
74 | W | 183.840000 | 1.000000e-02 | [Xe] 4f14 5d4 6s2 |
75 | Re | 186.207000 | 1.000000e-03 | [Xe] 4f14 5d5 6s2 |
76 | Os | 190.230000 | 3.000000e-02 | [Xe] 4f14 5d6 6s2 |
77 | Ir | 192.217000 | 3.000000e-03 | [Xe] 4f14 5d7 6s2 |
78 | Pt | 195.084000 | 9.000000e-03 | [Xe] 4f14 5d9 6s |
79 | Au | 196.966569 | 5.000000e-06 | [Xe] 4f14 5d10 6s |
80 | Hg | 200.592000 | 3.000000e-03 | [Xe] 4f14 5d10 6s2 |
81 | Tl | 204.380000 | NaN | [Xe] 4f14 5d10 6s2 6p |
82 | Pb | 207.200000 | 1.000000e-01 | [Xe] 4f14 5d10 6s2 6p2 |
83 | Bi | 208.980400 | 1.000000e-05 | [Xe] 4f14 5d10 6s2 6p3 |
84 | Po | 209.000000 | NaN | [Xe] 4f14 5d10 6s2 6p4 |
85 | At | 210.000000 | NaN | [Xe] 4f14 5d10 6s2 6p5 |
86 | Rn | 222.000000 | NaN | [Xe] 4f14 5d10 6s2 6p6 |
87 | Fr | 223.000000 | NaN | [Rn] 7s |
88 | Ra | 226.000000 | NaN | [Rn] 7s2 |
89 | Ac | 227.000000 | NaN | [Rn] 6d 7s2 |
90 | Th | 232.037700 | 4.000000e-04 | [Rn] 6d2 7s2 |
91 | Pa | 231.035880 | 2.000000e-05 | [Rn] 5f2 6d 7s2 |
92 | U | 238.028910 | 3.000000e-05 | [Rn] 5f3 6d 7s2 |
93 | Np | 237.000000 | NaN | [Rn] 5f4 6d 7s2 |
94 | Pu | 244.000000 | NaN | [Rn] 5f6 7s2 |
95 | Am | 243.000000 | NaN | [Rn] 5f7 7s2 |
96 | Cm | 247.000000 | NaN | [Rn] 5f7 6d 7s2 |
97 | Bk | 247.000000 | NaN | [Rn] 5f9 7s2 |
98 | Cf | 251.000000 | NaN | [Rn] 5f10 7s2 |
99 | Es | 252.000000 | NaN | [Rn] 5f11 7s2 |
100 | Fm | 257.000000 | NaN | [Rn] 5f12 7s2 |
101 | Md | 258.000000 | NaN | [Rn] 5f13 7s2 |
102 | No | 259.000000 | NaN | [Rn] 5f14 7s2 |
103 | Lr | 262.000000 | NaN | [Rn] 5f14 6d 7s2 |
104 | Rf | 267.000000 | NaN | [Rn] 5f14 6d2 7s2 |
105 | Db | 268.000000 | NaN | [Rn] 5f14 6d3 7s2 |
106 | Sg | 271.000000 | NaN | [Rn] 5f14 6d4 7s2 |
107 | Bh | 274.000000 | NaN | [Rn] 5f14 6d5 7s2 |
108 | Hs | 269.000000 | NaN | [Rn] 5f14 6d6 7s2 |
109 | Mt | 276.000000 | NaN | [Rn] 5f14 6d7 7s2 |
110 | Ds | 281.000000 | NaN | [Rn] 5f14 6d9 7s1 |
111 | Rg | 281.000000 | NaN | [Rn] 5f14 6d10 7s1 |
112 | Cn | 285.000000 | NaN | [Rn] 5f14 6d10 7s2 |
113 | Nh | 286.000000 | NaN | [Rn] 5f14 6d10 7s2 7p1 |
114 | Fl | 289.000000 | NaN | [Rn] 5f14 6d10 7s2 7p2 |
115 | Mc | 288.000000 | NaN | [Rn] 5f14 6d10 7s2 7p3 |
116 | Lv | 293.000000 | NaN | [Rn] 5f14 6d10 7s2 7p4 |
117 | Ts | 294.000000 | NaN | [Rn] 5f14 6d10 7s2 7p5 |
118 | Og | 294.000000 | NaN | [Rn] 5f14 6d10 7s2 7p6 |
problem_type: 8/20 (loop 0/0)
Problem Template: _problem_atomic_number_vs_atomic_radius
Plot a graph of atomic_number vs ['vdw_radius_bondi'] of elements.
Answer:
Solution:
Trend in atomic radii:
- Every time a new orbit is added, the radius increases.
-
Within an orbit, over all trend of atomic radii can be explained based two factors that are working there, nuclear attractions and inter electronic repulsions, where one supports decrease in atomic radii and the other increase in atomic radii, respectively.
As a result, the outer electron experiences a pull towards the nucleus as the nuclear charge increases and the size decreases. Order of shielding is as s>p>d>f.
In d and f orbitals, initially one factor nuclear charge increases as the new electrons coming and entering into same orbital that to inner one, as the number of electrons are low in the inner shell and the shielding power of d orbial is low, inter electronic repulsions will be operating less than nuclear charge, which results in decrease in atomic radii.
In the middle these two factors mostly operating equal, which results in consistency in size.
In the end, as the number of electrons in the inner orbital increases the outer electrons feel better repulsions and slightly pushed away. though d orbital has less shielding power, the number of electrons are too high to make the electronic repulsion as more dominant factor at the end, which results in increase in the atomic radii.
Optional Input Parameters
y_column
A list of one or more values from
['atomic_radius', 'vdw_radius', 'covalent_radius_cordero', 'covalent_radius_pyykko', 'covalent_radius_bragg', 'vdw_radius_bondi', 'vdw_radius_truhlar', 'vdw_radius_rt', 'vdw_radius_batsanov', 'vdw_radius_dreiding', 'vdw_radius_uff', 'vdw_radius_mm3', 'vdw_radius_alvarez', 'atomic_radius_rahm', 'metallic_radius', 'metallic_radius_c12', 'covalent_radius_pyykko_double', 'covalent_radius_pyykko_triple']
blocks
a list of one or more values from ['s', 'p', 'd', 'f']
group_ids
a list of one or more values from 1 to 17
series_ids
a list of one or more values from 1 to 10
start_atomic_number
Value from 1 to 118
end_atomic_number
Value from 1 to 118