# ChemCalcManager.ipynb

In [1]:
from xv.chemistry.physical import ChemCalcManager

In [2]:
ke = ChemCalcManager()
ke

Out[2]:
2329356375232@ChemCalcManager

Details of elements

Examples
--------
ke = ChemCalcManager()
ke

ke.printProblemTypes()

ke.getRandomProblem()
ke.getRandomProblem(problem_type = 0)
...

ke.printProblem()
ke.printSolution()

doc_style: xv_doc

In [3]:
ke.printProblemTypes()

0. _problem_units_and_dimensions
1. _problem_dimensionless_numbers
2. _problem_mole_relation
3. _problem_unit_to_amu
4. _problem_unit_to_gram
5. _problem_mole_to_gram
6. _problem_gram_to_mole
7. _problem_convert_units
8. _problem_physical_constants
9. _problem_dimension_of_constant

In [ ]:


In [4]:
from IPython.display import HTML
n = len(ke._problemTemplates)
max_loop = 1
for j in range(0, max_loop):
for i in range(n):
problem_type = i
display(HTML(f"<h2>problem_type: {problem_type}/{n-1} (loop {j}/{max_loop-1})</h2>"))
ke.getRandomProblem(problem_type = problem_type, verbose = True)
display(ke.printProblem())

display(HTML(f"<h6>Solution:</h6>"))
display(ke.printSolution())
pass


## problem_type: 0/9 (loop 0/0)

Problem Template: _problem_units_and_dimensions


What are units and dimensions.
Dimensions are physical quantities that can be measured. Units are popular names used to measure relativeness of physical quantities. Unit correspond to a dimension or is composite of more than one such units.
For example,
 Physical Quantity Dimension Units Made of units/dimension length length meter meter area length ** 2 meter ** 2s meter length length inch speed length / time meter / second meter, second speed length / time inch / second inch, second
###### Solution:
Dimensions are physical quantities that can be measured. Units are popular names used to measure relativeness of physical quantities. Unit correspond to a dimension or is composite of more than one such units.
For example,
 Physical Quantity Dimension Units Made of units/dimension length length meter meter area length ** 2 meter ** 2s meter length length inch speed length / time meter / second meter, second speed length / time inch / second inch, second

## problem_type: 1/9 (loop 0/0)

Problem Template: _problem_dimensionless_numbers


Write the alternative names for the followings:
$\displaystyle 2$
$\displaystyle 12$
$\displaystyle 100$
$\displaystyle 1000$
$\displaystyle {{10}}^{{3}}$
$\displaystyle {{10}}^{{6}}$
$\displaystyle {{10}}^{{9}}$
$\displaystyle 6.023 * {{10}}^{{23}}$
$\displaystyle 2$ = pair
$\displaystyle 12$ = dozen
$\displaystyle 100$ = century, hundred
$\displaystyle 1000$ = kilo, thousand
$\displaystyle {{10}}^{{3}}$ = kilo, thousand
$\displaystyle {{10}}^{{6}}$ = million
$\displaystyle {{10}}^{{9}}$ = billion
$\displaystyle 6.023 * {{10}}^{{23}}$ = mole, Avogadro Number

Note: avogadro_number is also written as N.
###### Solution:
$\displaystyle 2$ = pair
$\displaystyle 12$ = dozen
$\displaystyle 100$ = century, hundred
$\displaystyle 1000$ = kilo, thousand
$\displaystyle {{10}}^{{3}}$ = kilo, thousand
$\displaystyle {{10}}^{{6}}$ = million
$\displaystyle {{10}}^{{9}}$ = billion
$\displaystyle 6.023 * {{10}}^{{23}}$ = mole, Avogadro Number

Note: avogadro_number is also written as N.

## problem_type: 2/9 (loop 0/0)

Problem Template: _problem_mole_relation


What is relation between unified_atomic_mass_unit (amu) and gram.
1 mole = avogadro_number = 6.02214076e+23 = N

1 mole amu = 1 gram

6.022140762081123e+23 amu = 1 gram
###### Solution:
1 mole = avogadro_number = 6.02214076e+23 = N

1 mole amu = 1 gram

6.022140762081123e+23 amu = 1 gram

## problem_type: 3/9 (loop 0/0)

Problem Template: _problem_unit_to_amu


Convert 1 Sodium atom into amu.

Note: Use mass of particles from periodic table.
$\displaystyle 22.9900000000000 \; amu$
###### Solution:
1 Sodium atom

$\displaystyle = 1 * Na$

$\displaystyle = 1 * \left( 22.990 \right) \; amu$

$\displaystyle = 22.9900000000000 \; amu$

## problem_type: 4/9 (loop 0/0)

Problem Template: _problem_unit_to_gram


Convert 7 Hydrogen molecule into gram.

Note: Use mass of particles from periodic table.
$\displaystyle 2.34340750581202E-23 \; gram$
###### Solution:
1 mole amu = 1 gram
1 mole = $\displaystyle {6.022} * {10}^{23}$

Now:
7 Hydrogen molecule

$\displaystyle = 7 * H_{{2}}$

$\displaystyle = 7 * \left( 2 * 1.008 \right) \; amu$

$\displaystyle = 7 * \left( 2 * 1.008 \right) \; amu * \left( \frac{1 \; gram} { 1 \; mole \; amu} \right) * \left( \frac{1 \; mole} {6.022 * {10}^{23}} \right)$

$\displaystyle = 2.34340750581202E-23 \; gram$

## problem_type: 5/9 (loop 0/0)

Problem Template: _problem_mole_to_gram


Convert 7 mole Ferric ion into gram.

Note: Use mass of particles from periodic table.
$\displaystyle 390.903475200000 \; gram$
###### Solution:
1 mole amu = 1 gram
1 mole = $\displaystyle {6.022} * {10}^{23}$

Now:
7 mole Ferric ion

$\displaystyle = 7 \; mole * Fe^{{3+}}$

$\displaystyle = 7 \; mole * \left( 55.845 - 3 * 0.0005488 \right) amu$

$\displaystyle = 390.903475200000 \; mole \; amu$

$\displaystyle = 390.903475200000 \; gram$

## problem_type: 6/9 (loop 0/0)

Problem Template: _problem_gram_to_mole


Convert 7 gram Sulphuric Acid molecule into mole.

Note: Use mass of particles from periodic table.
$\displaystyle 0.0713761318215189 \; mole \; \text{Sulphuric Acid molecule}$
###### Solution:
1 mole amu = 1 gram
1 mole = $\displaystyle {6.022} * {10}^{23}$

First part:

1 Sulphuric Acid molecule

$\displaystyle = 1 * H_{{2}}SO_{{4}}$

$\displaystyle = 1 * \left( 2 * 1.008 + 32.06 + 4 * 15.999 \right) \; amu$

$\displaystyle = 98.0720000000000 \; amu$

Second part:

7 gram

$\displaystyle = 7 \; gram * \left( \frac{1 \; mole \; amu } { 1 \; gram} \right) * \left( \frac{ 1 \; \text{Sulphuric Acid molecule} } { 98.0720000000000 \; amu } \right)$

$\displaystyle = 0.0713761318215189 \; mole \; \text{Sulphuric Acid molecule}$

## problem_type: 7/9 (loop 0/0)

Problem Template: _problem_convert_units


Convert 4 square-kilo-meter to square-meter.

Note: You may use the following table:
1 hectare     =     2.47 acre
1 hectare     =     10000 square-meter
1 square-inch     =     6.4516 square-centi-meter
1 square-feet     =     144 square-inch
1 square-yard     =     9 square-feet
1 square-mile     =     2.588881 square-kilo-meter
1 square-kilo-meter     =     1000000 square-meter
1 square-centi-meter     =     0.0001 square-meter
4000000.0 square-meter
###### Solution:

4 square-kilo-meter = ? square-meter

The conversion path will be:
square-kilo-meter→square-meter

4 square-kilo-meter

= 4 square-kilo-meter * ${ \frac { 1000000\;square\;meter } { 1\;square\;kilo\;meter } }$

= 4 * ${ \frac { 1000000 } { 1 } }$ square-meter

= 4 * 1000000.0 square-meter

= 4000000.0 square-meter

## problem_type: 8/9 (loop 0/0)

Problem Template: _problem_physical_constants

Write some of important physical constants used in chemistry.
K alpha Cu d 220 = 0.80232719 $\displaystyle dimensionless$

K alpha Mo d 220 = 0.36940604 $\displaystyle dimensionless$

K alpha W d 220 = 0.108852175 $\displaystyle dimensionless$

atomic mass constant = 1.6605390666e-27 $\displaystyle kilogram$

avogadro constant = 6.02214076e+23 $\displaystyle \frac{1}{mole}$

avogadro number = 6.02214076e+23 $\displaystyle dimensionless$

boltzmann constant = 1.380649e-23 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;second^{2}}$

classical electron radius = 2.817940326216153e-15 $\displaystyle meter$

conductance quantum = 7.74809172986365e-05 $\displaystyle \frac{ampere^{2}\;second^{3}}{kilogram\;meter^{2}}$

conventional josephson constant = 483597900000000.0 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$

conventional von klitzing constant = 25812.807 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$

coulomb constant = 8987551792.29697 $\displaystyle \frac{kilogram\;meter^{3}}{ampere^{2}\;second^{4}}$

dirac constant = 1.0545718176461565e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$

electron g factor = -2.00231930436256 $\displaystyle dimensionless$

electron mass = 9.1093837015e-31 $\displaystyle kilogram$

elementary charge = 1.602176634e-19 $\displaystyle ampere\;second$

eulers number = 2.718281828459045 $\displaystyle dimensionless$

faraday constant = 96485.33212331001 $\displaystyle \frac{ampere\;second}{mole}$

fine structure constant = 0.007297352569307099 $\displaystyle dimensionless$

first radiation constant = 3.7417718521927573e-16 $\displaystyle \frac{kilogram\;meter^{4}}{second^{3}}$

impedance of free space = 376.73031366837046 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$

josephson constant = 483597848416983.56 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$

lattice spacing of Si = 1.920155716e-10 $\displaystyle meter$

ln10 = 2.302585092994046 $\displaystyle dimensionless$

magnetic flux quantum = 2.0678338484619295e-15 $\displaystyle \frac{kilogram\;meter^{2}}{ampere\;second^{2}}$

molar gas constant = 8.314462618153241 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;mole\;second^{2}}$

neutron mass = 1.67492749804e-27 $\displaystyle kilogram$

newtonian constant of gravitation = 6.6743e-11 $\displaystyle \frac{meter^{3}}{kilogram\;second^{2}}$

pi = 3.141592653589793 $\displaystyle dimensionless$

planck constant = 6.626070150000001e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$

proton mass = 1.67262192369e-27 $\displaystyle kilogram$

rydberg constant = 10973731.56816 $\displaystyle \frac{1}{meter}$

second radiation constant = 0.014387768775039339 $\displaystyle kelvin\;meter$

speed of light = 299792458.0 $\displaystyle \frac{meter}{second}$

standard atmosphere = 101325.0 $\displaystyle \frac{kilogram}{meter\;second^{2}}$

standard gravity = 9.80665 $\displaystyle \frac{meter}{second^{2}}$

stefan boltzmann constant = 5.670374419184431e-08 $\displaystyle \frac{kilogram}{kelvin^{4}\;second^{3}}$

tansec = 4.848136811133344e-06 $\displaystyle dimensionless$

thomson cross section = 6.652458732226516e-29 $\displaystyle meter^{2}$

vacuum permeability = 1.2566370621250601e-06 $\displaystyle \frac{kilogram\;meter}{ampere^{2}\;second^{2}}$

vacuum permittivity = 8.854187812764727e-12 $\displaystyle \frac{ampere^{2}\;second^{4}}{kilogram\;meter^{3}}$

von klitzing constant = 25812.807459304513 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$

wien frequency displacement law constant = 58789257576.46826 $\displaystyle \frac{1}{kelvin\;second}$

wien u = 2.8214393721220787 $\displaystyle dimensionless$

wien wavelength displacement law constant = 0.002897771955185173 $\displaystyle kelvin\;meter$

wien x = 4.965114231744276 $\displaystyle dimensionless$

zeta = 29979245800.0 $\displaystyle dimensionless$
###### Solution:
K alpha Cu d 220 = 0.80232719 $\displaystyle dimensionless$

K alpha Mo d 220 = 0.36940604 $\displaystyle dimensionless$

K alpha W d 220 = 0.108852175 $\displaystyle dimensionless$

atomic mass constant = 1.6605390666e-27 $\displaystyle kilogram$

avogadro constant = 6.02214076e+23 $\displaystyle \frac{1}{mole}$

avogadro number = 6.02214076e+23 $\displaystyle dimensionless$

boltzmann constant = 1.380649e-23 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;second^{2}}$

classical electron radius = 2.817940326216153e-15 $\displaystyle meter$

conductance quantum = 7.74809172986365e-05 $\displaystyle \frac{ampere^{2}\;second^{3}}{kilogram\;meter^{2}}$

conventional josephson constant = 483597900000000.0 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$

conventional von klitzing constant = 25812.807 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$

coulomb constant = 8987551792.29697 $\displaystyle \frac{kilogram\;meter^{3}}{ampere^{2}\;second^{4}}$

dirac constant = 1.0545718176461565e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$

electron g factor = -2.00231930436256 $\displaystyle dimensionless$

electron mass = 9.1093837015e-31 $\displaystyle kilogram$

elementary charge = 1.602176634e-19 $\displaystyle ampere\;second$

eulers number = 2.718281828459045 $\displaystyle dimensionless$

faraday constant = 96485.33212331001 $\displaystyle \frac{ampere\;second}{mole}$

fine structure constant = 0.007297352569307099 $\displaystyle dimensionless$

first radiation constant = 3.7417718521927573e-16 $\displaystyle \frac{kilogram\;meter^{4}}{second^{3}}$

impedance of free space = 376.73031366837046 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$

josephson constant = 483597848416983.56 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$

lattice spacing of Si = 1.920155716e-10 $\displaystyle meter$

ln10 = 2.302585092994046 $\displaystyle dimensionless$

magnetic flux quantum = 2.0678338484619295e-15 $\displaystyle \frac{kilogram\;meter^{2}}{ampere\;second^{2}}$

molar gas constant = 8.314462618153241 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;mole\;second^{2}}$

neutron mass = 1.67492749804e-27 $\displaystyle kilogram$

newtonian constant of gravitation = 6.6743e-11 $\displaystyle \frac{meter^{3}}{kilogram\;second^{2}}$

pi = 3.141592653589793 $\displaystyle dimensionless$

planck constant = 6.626070150000001e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$

proton mass = 1.67262192369e-27 $\displaystyle kilogram$

rydberg constant = 10973731.56816 $\displaystyle \frac{1}{meter}$

second radiation constant = 0.014387768775039339 $\displaystyle kelvin\;meter$

speed of light = 299792458.0 $\displaystyle \frac{meter}{second}$

standard atmosphere = 101325.0 $\displaystyle \frac{kilogram}{meter\;second^{2}}$

standard gravity = 9.80665 $\displaystyle \frac{meter}{second^{2}}$

stefan boltzmann constant = 5.670374419184431e-08 $\displaystyle \frac{kilogram}{kelvin^{4}\;second^{3}}$

tansec = 4.848136811133344e-06 $\displaystyle dimensionless$

thomson cross section = 6.652458732226516e-29 $\displaystyle meter^{2}$

vacuum permeability = 1.2566370621250601e-06 $\displaystyle \frac{kilogram\;meter}{ampere^{2}\;second^{2}}$

vacuum permittivity = 8.854187812764727e-12 $\displaystyle \frac{ampere^{2}\;second^{4}}{kilogram\;meter^{3}}$

von klitzing constant = 25812.807459304513 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$

wien frequency displacement law constant = 58789257576.46826 $\displaystyle \frac{1}{kelvin\;second}$

wien u = 2.8214393721220787 $\displaystyle dimensionless$

wien wavelength displacement law constant = 0.002897771955185173 $\displaystyle kelvin\;meter$

wien x = 4.965114231744276 $\displaystyle dimensionless$

zeta = 29979245800.0 $\displaystyle dimensionless$

## problem_type: 9/9 (loop 0/0)

Problem Template: _problem_dimension_of_constant

What is dimension and base unit of rydberg_constant?
rydberg_constant = 1 / meter
###### Solution:
rydberg_constant = 1 / meter

To get names of all compatible units:
ke.ps.get_compatible_units(unit_name)
In [ ]: