In [1]:
from xv.chemistry.physical import ChemCalcManager
In [2]:
ke = ChemCalcManager()
ke
Out[2]:
2329356375232@ChemCalcManager
Details of elements
Minimum Grade: 6
Maximum Grade: 12
Examples
--------
ke = ChemCalcManager()
ke
ke.printProblemTypes()
ke.getRandomProblem()
ke.getRandomProblem(problem_type = 0)
...
ke.printProblem()
ke.printAnswer()
ke.printSolution()
doc_style: xv_doc
Details of elements
Minimum Grade: 6
Maximum Grade: 12
Examples
--------
ke = ChemCalcManager()
ke
ke.printProblemTypes()
ke.getRandomProblem()
ke.getRandomProblem(problem_type = 0)
...
ke.printProblem()
ke.printAnswer()
ke.printSolution()
doc_style: xv_doc
In [3]:
ke.printProblemTypes()
0. _problem_units_and_dimensions 1. _problem_dimensionless_numbers 2. _problem_mole_relation 3. _problem_unit_to_amu 4. _problem_unit_to_gram 5. _problem_mole_to_gram 6. _problem_gram_to_mole 7. _problem_convert_units 8. _problem_physical_constants 9. _problem_dimension_of_constant
In [ ]:
In [4]:
from IPython.display import HTML
n = len(ke._problemTemplates)
max_loop = 1
for j in range(0, max_loop):
for i in range(n):
problem_type = i
display(HTML(f"<h2>problem_type: {problem_type}/{n-1} (loop {j}/{max_loop-1})</h2>"))
ke.getRandomProblem(problem_type = problem_type, verbose = True)
display(ke.printProblem())
display(HTML(f"<h6>Answer:</h6>"))
display(ke.printAnswer())
display(HTML(f"<h6>Solution:</h6>"))
display(ke.printSolution())
pass
problem_type: 0/9 (loop 0/0)
Problem Template: _problem_units_and_dimensions
What are units and dimensions.
Answer:
Dimensions are physical quantities that can be measured. Units are popular names used to measure relativeness of physical quantities. Unit correspond to a dimension or is composite of more than one such units.
For example,
For example,
Physical Quantity | Dimension | Units | Made of units/dimension |
length | length | meter | meter |
area | length ** 2 | meter ** 2s | meter |
length | length | inch | |
speed | length / time | meter / second | meter, second |
speed | length / time | inch / second | inch, second |
Solution:
Dimensions are physical quantities that can be measured. Units are popular names used to measure relativeness of physical quantities. Unit correspond to a dimension or is composite of more than one such units.
For example,
For example,
Physical Quantity | Dimension | Units | Made of units/dimension |
length | length | meter | meter |
area | length ** 2 | meter ** 2s | meter |
length | length | inch | |
speed | length / time | meter / second | meter, second |
speed | length / time | inch / second | inch, second |
problem_type: 1/9 (loop 0/0)
Problem Template: _problem_dimensionless_numbers
Write the alternative names for the followings:
$\displaystyle 2$
$\displaystyle 12$
$\displaystyle 100$
$\displaystyle 1000$
$\displaystyle {{10}}^{{3}}$
$\displaystyle {{10}}^{{6}}$
$\displaystyle {{10}}^{{9}}$
$\displaystyle 6.023 * {{10}}^{{23}}$
Answer:
$\displaystyle 2$ = pair
$\displaystyle 12$ = dozen
$\displaystyle 100$ = century, hundred
$\displaystyle 1000$ = kilo, thousand
$\displaystyle {{10}}^{{3}}$ = kilo, thousand
$\displaystyle {{10}}^{{6}}$ = million
$\displaystyle {{10}}^{{9}}$ = billion
$\displaystyle 6.023 * {{10}}^{{23}}$ = mole, Avogadro Number
Note: avogadro_number is also written as N.
$\displaystyle 12$ = dozen
$\displaystyle 100$ = century, hundred
$\displaystyle 1000$ = kilo, thousand
$\displaystyle {{10}}^{{3}}$ = kilo, thousand
$\displaystyle {{10}}^{{6}}$ = million
$\displaystyle {{10}}^{{9}}$ = billion
$\displaystyle 6.023 * {{10}}^{{23}}$ = mole, Avogadro Number
Note: avogadro_number is also written as N.
Solution:
$\displaystyle 2$ = pair
$\displaystyle 12$ = dozen
$\displaystyle 100$ = century, hundred
$\displaystyle 1000$ = kilo, thousand
$\displaystyle {{10}}^{{3}}$ = kilo, thousand
$\displaystyle {{10}}^{{6}}$ = million
$\displaystyle {{10}}^{{9}}$ = billion
$\displaystyle 6.023 * {{10}}^{{23}}$ = mole, Avogadro Number
Note: avogadro_number is also written as N.
$\displaystyle 12$ = dozen
$\displaystyle 100$ = century, hundred
$\displaystyle 1000$ = kilo, thousand
$\displaystyle {{10}}^{{3}}$ = kilo, thousand
$\displaystyle {{10}}^{{6}}$ = million
$\displaystyle {{10}}^{{9}}$ = billion
$\displaystyle 6.023 * {{10}}^{{23}}$ = mole, Avogadro Number
Note: avogadro_number is also written as N.
problem_type: 2/9 (loop 0/0)
Problem Template: _problem_mole_relation
What is relation between unified_atomic_mass_unit (amu) and gram.
Answer:
1 mole = avogadro_number = 6.02214076e+23 = N
1 mole amu = 1 gram
6.022140762081123e+23 amu = 1 gram
1 mole amu = 1 gram
6.022140762081123e+23 amu = 1 gram
Solution:
1 mole = avogadro_number = 6.02214076e+23 = N
1 mole amu = 1 gram
6.022140762081123e+23 amu = 1 gram
1 mole amu = 1 gram
6.022140762081123e+23 amu = 1 gram
problem_type: 3/9 (loop 0/0)
Problem Template: _problem_unit_to_amu
Convert 1 Sodium atom into amu.
Note: Use mass of particles from periodic table.
Answer:
$\displaystyle
22.9900000000000 \; amu
$
22.9900000000000 \; amu
$
Solution:
1 Sodium atom
$\displaystyle
= 1 * Na
$
$\displaystyle
= 1 * \left( 22.990 \right) \; amu
$
$\displaystyle
= 22.9900000000000 \; amu
$
$\displaystyle
= 1 * Na
$
$\displaystyle
= 1 * \left( 22.990 \right) \; amu
$
$\displaystyle
= 22.9900000000000 \; amu
$
problem_type: 4/9 (loop 0/0)
Problem Template: _problem_unit_to_gram
Convert 7 Hydrogen molecule into gram.
Note: Use mass of particles from periodic table.
Answer:
$\displaystyle
2.34340750581202E-23 \; gram
$
2.34340750581202E-23 \; gram
$
Solution:
Please note:
1 mole amu = 1 gram
1 mole = $\displaystyle {6.022} * {10}^{23} $
Now:
7 Hydrogen molecule
$\displaystyle
= 7 * H_{{2}}
$
$\displaystyle
= 7 * \left( 2 * 1.008 \right) \; amu
$
$\displaystyle
= 7 *
\left( 2 * 1.008 \right) \; amu
* \left( \frac{1 \; gram} { 1 \; mole \; amu} \right)
* \left( \frac{1 \; mole} {6.022 * {10}^{23}} \right)
$
$\displaystyle
= 2.34340750581202E-23 \; gram
$
1 mole amu = 1 gram
1 mole = $\displaystyle {6.022} * {10}^{23} $
Now:
7 Hydrogen molecule
$\displaystyle
= 7 * H_{{2}}
$
$\displaystyle
= 7 * \left( 2 * 1.008 \right) \; amu
$
$\displaystyle
= 7 *
\left( 2 * 1.008 \right) \; amu
* \left( \frac{1 \; gram} { 1 \; mole \; amu} \right)
* \left( \frac{1 \; mole} {6.022 * {10}^{23}} \right)
$
$\displaystyle
= 2.34340750581202E-23 \; gram
$
problem_type: 5/9 (loop 0/0)
Problem Template: _problem_mole_to_gram
Convert 7 mole Ferric ion into gram.
Note: Use mass of particles from periodic table.
Answer:
$\displaystyle
390.903475200000 \; gram
$
390.903475200000 \; gram
$
Solution:
Please note:
1 mole amu = 1 gram
1 mole = $\displaystyle {6.022} * {10}^{23} $
Now:
7 mole Ferric ion
$\displaystyle
= 7 \; mole * Fe^{{3+}}
$
$\displaystyle
= 7 \; mole * \left( 55.845 - 3 * 0.0005488 \right) amu
$
$\displaystyle
= 390.903475200000 \; mole \; amu
$
$\displaystyle
= 390.903475200000 \; gram
$
1 mole amu = 1 gram
1 mole = $\displaystyle {6.022} * {10}^{23} $
Now:
7 mole Ferric ion
$\displaystyle
= 7 \; mole * Fe^{{3+}}
$
$\displaystyle
= 7 \; mole * \left( 55.845 - 3 * 0.0005488 \right) amu
$
$\displaystyle
= 390.903475200000 \; mole \; amu
$
$\displaystyle
= 390.903475200000 \; gram
$
problem_type: 6/9 (loop 0/0)
Problem Template: _problem_gram_to_mole
Convert 7 gram Sulphuric Acid molecule into mole.
Note: Use mass of particles from periodic table.
Answer:
$\displaystyle
0.0713761318215189
\; mole \; \text{Sulphuric Acid molecule}
$
0.0713761318215189
\; mole \; \text{Sulphuric Acid molecule}
$
Solution:
Please note:
1 mole amu = 1 gram
1 mole = $\displaystyle {6.022} * {10}^{23} $
First part:
1 Sulphuric Acid molecule
$\displaystyle
= 1 * H_{{2}}SO_{{4}}
$
$\displaystyle
= 1 * \left( 2 * 1.008 + 32.06 + 4 * 15.999 \right) \; amu
$
$\displaystyle
= 98.0720000000000 \; amu
$
Second part:
7 gram
$\displaystyle
= 7 \; gram
* \left(
\frac{1 \; mole \; amu } { 1 \; gram}
\right)
* \left(
\frac{ 1 \; \text{Sulphuric Acid molecule} } { 98.0720000000000 \; amu }
\right)
$
$\displaystyle
= 0.0713761318215189
\; mole \; \text{Sulphuric Acid molecule}
$
1 mole amu = 1 gram
1 mole = $\displaystyle {6.022} * {10}^{23} $
First part:
1 Sulphuric Acid molecule
$\displaystyle
= 1 * H_{{2}}SO_{{4}}
$
$\displaystyle
= 1 * \left( 2 * 1.008 + 32.06 + 4 * 15.999 \right) \; amu
$
$\displaystyle
= 98.0720000000000 \; amu
$
Second part:
7 gram
$\displaystyle
= 7 \; gram
* \left(
\frac{1 \; mole \; amu } { 1 \; gram}
\right)
* \left(
\frac{ 1 \; \text{Sulphuric Acid molecule} } { 98.0720000000000 \; amu }
\right)
$
$\displaystyle
= 0.0713761318215189
\; mole \; \text{Sulphuric Acid molecule}
$
problem_type: 7/9 (loop 0/0)
Problem Template: _problem_convert_units
Convert 4 square-kilo-meter to square-meter.
Note: You may use the following table:
1 hectare = 2.47 acre
1 hectare = 10000 square-meter
1 square-inch = 6.4516 square-centi-meter
1 square-feet = 144 square-inch
1 square-yard = 9 square-feet
1 square-mile = 2.588881 square-kilo-meter
1 square-kilo-meter = 1000000 square-meter
1 square-centi-meter = 0.0001 square-meter
Answer:
4000000.0 square-meter
Solution:
4 square-kilo-meter = ? square-meter
The conversion path will be:
square-kilo-meter→square-meter
4 square-kilo-meter
= 4 square-kilo-meter * $ { \frac { 1000000\;square\;meter } { 1\;square\;kilo\;meter } } $
= 4 * $ { \frac { 1000000 } { 1 } } $ square-meter
= 4 * 1000000.0 square-meter
= 4000000.0 square-meter
problem_type: 8/9 (loop 0/0)
Problem Template: _problem_physical_constants
Write some of important physical constants used in chemistry.
Answer:
K alpha Cu d 220 = 0.80232719 $\displaystyle dimensionless$
K alpha Mo d 220 = 0.36940604 $\displaystyle dimensionless$
K alpha W d 220 = 0.108852175 $\displaystyle dimensionless$
atomic mass constant = 1.6605390666e-27 $\displaystyle kilogram$
avogadro constant = 6.02214076e+23 $\displaystyle \frac{1}{mole}$
avogadro number = 6.02214076e+23 $\displaystyle dimensionless$
boltzmann constant = 1.380649e-23 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;second^{2}}$
classical electron radius = 2.817940326216153e-15 $\displaystyle meter$
conductance quantum = 7.74809172986365e-05 $\displaystyle \frac{ampere^{2}\;second^{3}}{kilogram\;meter^{2}}$
conventional josephson constant = 483597900000000.0 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$
conventional von klitzing constant = 25812.807 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
coulomb constant = 8987551792.29697 $\displaystyle \frac{kilogram\;meter^{3}}{ampere^{2}\;second^{4}}$
dirac constant = 1.0545718176461565e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$
electron g factor = -2.00231930436256 $\displaystyle dimensionless$
electron mass = 9.1093837015e-31 $\displaystyle kilogram$
elementary charge = 1.602176634e-19 $\displaystyle ampere\;second$
eulers number = 2.718281828459045 $\displaystyle dimensionless$
faraday constant = 96485.33212331001 $\displaystyle \frac{ampere\;second}{mole}$
fine structure constant = 0.007297352569307099 $\displaystyle dimensionless$
first radiation constant = 3.7417718521927573e-16 $\displaystyle \frac{kilogram\;meter^{4}}{second^{3}}$
impedance of free space = 376.73031366837046 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
josephson constant = 483597848416983.56 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$
lattice spacing of Si = 1.920155716e-10 $\displaystyle meter$
ln10 = 2.302585092994046 $\displaystyle dimensionless$
magnetic flux quantum = 2.0678338484619295e-15 $\displaystyle \frac{kilogram\;meter^{2}}{ampere\;second^{2}}$
molar gas constant = 8.314462618153241 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;mole\;second^{2}}$
neutron mass = 1.67492749804e-27 $\displaystyle kilogram$
newtonian constant of gravitation = 6.6743e-11 $\displaystyle \frac{meter^{3}}{kilogram\;second^{2}}$
pi = 3.141592653589793 $\displaystyle dimensionless$
planck constant = 6.626070150000001e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$
proton mass = 1.67262192369e-27 $\displaystyle kilogram$
rydberg constant = 10973731.56816 $\displaystyle \frac{1}{meter}$
second radiation constant = 0.014387768775039339 $\displaystyle kelvin\;meter$
speed of light = 299792458.0 $\displaystyle \frac{meter}{second}$
standard atmosphere = 101325.0 $\displaystyle \frac{kilogram}{meter\;second^{2}}$
standard gravity = 9.80665 $\displaystyle \frac{meter}{second^{2}}$
stefan boltzmann constant = 5.670374419184431e-08 $\displaystyle \frac{kilogram}{kelvin^{4}\;second^{3}}$
tansec = 4.848136811133344e-06 $\displaystyle dimensionless$
thomson cross section = 6.652458732226516e-29 $\displaystyle meter^{2}$
vacuum permeability = 1.2566370621250601e-06 $\displaystyle \frac{kilogram\;meter}{ampere^{2}\;second^{2}}$
vacuum permittivity = 8.854187812764727e-12 $\displaystyle \frac{ampere^{2}\;second^{4}}{kilogram\;meter^{3}}$
von klitzing constant = 25812.807459304513 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
wien frequency displacement law constant = 58789257576.46826 $\displaystyle \frac{1}{kelvin\;second}$
wien u = 2.8214393721220787 $\displaystyle dimensionless$
wien wavelength displacement law constant = 0.002897771955185173 $\displaystyle kelvin\;meter$
wien x = 4.965114231744276 $\displaystyle dimensionless$
zeta = 29979245800.0 $\displaystyle dimensionless$
K alpha Mo d 220 = 0.36940604 $\displaystyle dimensionless$
K alpha W d 220 = 0.108852175 $\displaystyle dimensionless$
atomic mass constant = 1.6605390666e-27 $\displaystyle kilogram$
avogadro constant = 6.02214076e+23 $\displaystyle \frac{1}{mole}$
avogadro number = 6.02214076e+23 $\displaystyle dimensionless$
boltzmann constant = 1.380649e-23 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;second^{2}}$
classical electron radius = 2.817940326216153e-15 $\displaystyle meter$
conductance quantum = 7.74809172986365e-05 $\displaystyle \frac{ampere^{2}\;second^{3}}{kilogram\;meter^{2}}$
conventional josephson constant = 483597900000000.0 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$
conventional von klitzing constant = 25812.807 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
coulomb constant = 8987551792.29697 $\displaystyle \frac{kilogram\;meter^{3}}{ampere^{2}\;second^{4}}$
dirac constant = 1.0545718176461565e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$
electron g factor = -2.00231930436256 $\displaystyle dimensionless$
electron mass = 9.1093837015e-31 $\displaystyle kilogram$
elementary charge = 1.602176634e-19 $\displaystyle ampere\;second$
eulers number = 2.718281828459045 $\displaystyle dimensionless$
faraday constant = 96485.33212331001 $\displaystyle \frac{ampere\;second}{mole}$
fine structure constant = 0.007297352569307099 $\displaystyle dimensionless$
first radiation constant = 3.7417718521927573e-16 $\displaystyle \frac{kilogram\;meter^{4}}{second^{3}}$
impedance of free space = 376.73031366837046 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
josephson constant = 483597848416983.56 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$
lattice spacing of Si = 1.920155716e-10 $\displaystyle meter$
ln10 = 2.302585092994046 $\displaystyle dimensionless$
magnetic flux quantum = 2.0678338484619295e-15 $\displaystyle \frac{kilogram\;meter^{2}}{ampere\;second^{2}}$
molar gas constant = 8.314462618153241 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;mole\;second^{2}}$
neutron mass = 1.67492749804e-27 $\displaystyle kilogram$
newtonian constant of gravitation = 6.6743e-11 $\displaystyle \frac{meter^{3}}{kilogram\;second^{2}}$
pi = 3.141592653589793 $\displaystyle dimensionless$
planck constant = 6.626070150000001e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$
proton mass = 1.67262192369e-27 $\displaystyle kilogram$
rydberg constant = 10973731.56816 $\displaystyle \frac{1}{meter}$
second radiation constant = 0.014387768775039339 $\displaystyle kelvin\;meter$
speed of light = 299792458.0 $\displaystyle \frac{meter}{second}$
standard atmosphere = 101325.0 $\displaystyle \frac{kilogram}{meter\;second^{2}}$
standard gravity = 9.80665 $\displaystyle \frac{meter}{second^{2}}$
stefan boltzmann constant = 5.670374419184431e-08 $\displaystyle \frac{kilogram}{kelvin^{4}\;second^{3}}$
tansec = 4.848136811133344e-06 $\displaystyle dimensionless$
thomson cross section = 6.652458732226516e-29 $\displaystyle meter^{2}$
vacuum permeability = 1.2566370621250601e-06 $\displaystyle \frac{kilogram\;meter}{ampere^{2}\;second^{2}}$
vacuum permittivity = 8.854187812764727e-12 $\displaystyle \frac{ampere^{2}\;second^{4}}{kilogram\;meter^{3}}$
von klitzing constant = 25812.807459304513 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
wien frequency displacement law constant = 58789257576.46826 $\displaystyle \frac{1}{kelvin\;second}$
wien u = 2.8214393721220787 $\displaystyle dimensionless$
wien wavelength displacement law constant = 0.002897771955185173 $\displaystyle kelvin\;meter$
wien x = 4.965114231744276 $\displaystyle dimensionless$
zeta = 29979245800.0 $\displaystyle dimensionless$
Solution:
K alpha Cu d 220 = 0.80232719 $\displaystyle dimensionless$
K alpha Mo d 220 = 0.36940604 $\displaystyle dimensionless$
K alpha W d 220 = 0.108852175 $\displaystyle dimensionless$
atomic mass constant = 1.6605390666e-27 $\displaystyle kilogram$
avogadro constant = 6.02214076e+23 $\displaystyle \frac{1}{mole}$
avogadro number = 6.02214076e+23 $\displaystyle dimensionless$
boltzmann constant = 1.380649e-23 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;second^{2}}$
classical electron radius = 2.817940326216153e-15 $\displaystyle meter$
conductance quantum = 7.74809172986365e-05 $\displaystyle \frac{ampere^{2}\;second^{3}}{kilogram\;meter^{2}}$
conventional josephson constant = 483597900000000.0 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$
conventional von klitzing constant = 25812.807 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
coulomb constant = 8987551792.29697 $\displaystyle \frac{kilogram\;meter^{3}}{ampere^{2}\;second^{4}}$
dirac constant = 1.0545718176461565e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$
electron g factor = -2.00231930436256 $\displaystyle dimensionless$
electron mass = 9.1093837015e-31 $\displaystyle kilogram$
elementary charge = 1.602176634e-19 $\displaystyle ampere\;second$
eulers number = 2.718281828459045 $\displaystyle dimensionless$
faraday constant = 96485.33212331001 $\displaystyle \frac{ampere\;second}{mole}$
fine structure constant = 0.007297352569307099 $\displaystyle dimensionless$
first radiation constant = 3.7417718521927573e-16 $\displaystyle \frac{kilogram\;meter^{4}}{second^{3}}$
impedance of free space = 376.73031366837046 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
josephson constant = 483597848416983.56 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$
lattice spacing of Si = 1.920155716e-10 $\displaystyle meter$
ln10 = 2.302585092994046 $\displaystyle dimensionless$
magnetic flux quantum = 2.0678338484619295e-15 $\displaystyle \frac{kilogram\;meter^{2}}{ampere\;second^{2}}$
molar gas constant = 8.314462618153241 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;mole\;second^{2}}$
neutron mass = 1.67492749804e-27 $\displaystyle kilogram$
newtonian constant of gravitation = 6.6743e-11 $\displaystyle \frac{meter^{3}}{kilogram\;second^{2}}$
pi = 3.141592653589793 $\displaystyle dimensionless$
planck constant = 6.626070150000001e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$
proton mass = 1.67262192369e-27 $\displaystyle kilogram$
rydberg constant = 10973731.56816 $\displaystyle \frac{1}{meter}$
second radiation constant = 0.014387768775039339 $\displaystyle kelvin\;meter$
speed of light = 299792458.0 $\displaystyle \frac{meter}{second}$
standard atmosphere = 101325.0 $\displaystyle \frac{kilogram}{meter\;second^{2}}$
standard gravity = 9.80665 $\displaystyle \frac{meter}{second^{2}}$
stefan boltzmann constant = 5.670374419184431e-08 $\displaystyle \frac{kilogram}{kelvin^{4}\;second^{3}}$
tansec = 4.848136811133344e-06 $\displaystyle dimensionless$
thomson cross section = 6.652458732226516e-29 $\displaystyle meter^{2}$
vacuum permeability = 1.2566370621250601e-06 $\displaystyle \frac{kilogram\;meter}{ampere^{2}\;second^{2}}$
vacuum permittivity = 8.854187812764727e-12 $\displaystyle \frac{ampere^{2}\;second^{4}}{kilogram\;meter^{3}}$
von klitzing constant = 25812.807459304513 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
wien frequency displacement law constant = 58789257576.46826 $\displaystyle \frac{1}{kelvin\;second}$
wien u = 2.8214393721220787 $\displaystyle dimensionless$
wien wavelength displacement law constant = 0.002897771955185173 $\displaystyle kelvin\;meter$
wien x = 4.965114231744276 $\displaystyle dimensionless$
zeta = 29979245800.0 $\displaystyle dimensionless$
K alpha Mo d 220 = 0.36940604 $\displaystyle dimensionless$
K alpha W d 220 = 0.108852175 $\displaystyle dimensionless$
atomic mass constant = 1.6605390666e-27 $\displaystyle kilogram$
avogadro constant = 6.02214076e+23 $\displaystyle \frac{1}{mole}$
avogadro number = 6.02214076e+23 $\displaystyle dimensionless$
boltzmann constant = 1.380649e-23 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;second^{2}}$
classical electron radius = 2.817940326216153e-15 $\displaystyle meter$
conductance quantum = 7.74809172986365e-05 $\displaystyle \frac{ampere^{2}\;second^{3}}{kilogram\;meter^{2}}$
conventional josephson constant = 483597900000000.0 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$
conventional von klitzing constant = 25812.807 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
coulomb constant = 8987551792.29697 $\displaystyle \frac{kilogram\;meter^{3}}{ampere^{2}\;second^{4}}$
dirac constant = 1.0545718176461565e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$
electron g factor = -2.00231930436256 $\displaystyle dimensionless$
electron mass = 9.1093837015e-31 $\displaystyle kilogram$
elementary charge = 1.602176634e-19 $\displaystyle ampere\;second$
eulers number = 2.718281828459045 $\displaystyle dimensionless$
faraday constant = 96485.33212331001 $\displaystyle \frac{ampere\;second}{mole}$
fine structure constant = 0.007297352569307099 $\displaystyle dimensionless$
first radiation constant = 3.7417718521927573e-16 $\displaystyle \frac{kilogram\;meter^{4}}{second^{3}}$
impedance of free space = 376.73031366837046 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
josephson constant = 483597848416983.56 $\displaystyle \frac{ampere\;second^{2}}{kilogram\;meter^{2}}$
lattice spacing of Si = 1.920155716e-10 $\displaystyle meter$
ln10 = 2.302585092994046 $\displaystyle dimensionless$
magnetic flux quantum = 2.0678338484619295e-15 $\displaystyle \frac{kilogram\;meter^{2}}{ampere\;second^{2}}$
molar gas constant = 8.314462618153241 $\displaystyle \frac{kilogram\;meter^{2}}{kelvin\;mole\;second^{2}}$
neutron mass = 1.67492749804e-27 $\displaystyle kilogram$
newtonian constant of gravitation = 6.6743e-11 $\displaystyle \frac{meter^{3}}{kilogram\;second^{2}}$
pi = 3.141592653589793 $\displaystyle dimensionless$
planck constant = 6.626070150000001e-34 $\displaystyle \frac{kilogram\;meter^{2}}{second}$
proton mass = 1.67262192369e-27 $\displaystyle kilogram$
rydberg constant = 10973731.56816 $\displaystyle \frac{1}{meter}$
second radiation constant = 0.014387768775039339 $\displaystyle kelvin\;meter$
speed of light = 299792458.0 $\displaystyle \frac{meter}{second}$
standard atmosphere = 101325.0 $\displaystyle \frac{kilogram}{meter\;second^{2}}$
standard gravity = 9.80665 $\displaystyle \frac{meter}{second^{2}}$
stefan boltzmann constant = 5.670374419184431e-08 $\displaystyle \frac{kilogram}{kelvin^{4}\;second^{3}}$
tansec = 4.848136811133344e-06 $\displaystyle dimensionless$
thomson cross section = 6.652458732226516e-29 $\displaystyle meter^{2}$
vacuum permeability = 1.2566370621250601e-06 $\displaystyle \frac{kilogram\;meter}{ampere^{2}\;second^{2}}$
vacuum permittivity = 8.854187812764727e-12 $\displaystyle \frac{ampere^{2}\;second^{4}}{kilogram\;meter^{3}}$
von klitzing constant = 25812.807459304513 $\displaystyle \frac{kilogram\;meter^{2}}{ampere^{2}\;second^{3}}$
wien frequency displacement law constant = 58789257576.46826 $\displaystyle \frac{1}{kelvin\;second}$
wien u = 2.8214393721220787 $\displaystyle dimensionless$
wien wavelength displacement law constant = 0.002897771955185173 $\displaystyle kelvin\;meter$
wien x = 4.965114231744276 $\displaystyle dimensionless$
zeta = 29979245800.0 $\displaystyle dimensionless$
problem_type: 9/9 (loop 0/0)
Problem Template: _problem_dimension_of_constant
What is dimension and base unit of rydberg_constant?
Answer:
rydberg_constant = 1 / meter
Solution:
rydberg_constant = 1 / meter
To get names of all compatible units:
ke.ps.get_compatible_units(unit_name)
In [ ]: