vector-implimentation-2-vectors.ipynb

In [1]:
from xv.util import listAttr
import numpy as np

1. Create a vector

In [2]:
from sympy import Matrix
# from sympy.abc import a, b, x, y
from sympy.vector import CoordSys3D, matrix_to_vector
In [3]:
a, b = 1, 4
x, y = -2, 5
In [4]:
v1 = Matrix([a, b, 0])
v2 = Matrix([x, y, 0])
In [5]:
C = CoordSys3D('')
In [6]:
v3 = matrix_to_vector(v1, C)
display(v3)
$\displaystyle \mathbf{\hat{i}_{}} + (4)\mathbf{\hat{j}_{}}$
In [7]:
v4 = matrix_to_vector(v2, C)
display(v4)
$\displaystyle (-2)\mathbf{\hat{i}_{}} + (5)\mathbf{\hat{j}_{}}$
In [8]:
m_v3 = v3.to_matrix(C)
m_v3
Out[8]:
$\displaystyle \left[\begin{matrix}1\\4\\0\end{matrix}\right]$
In [9]:
m_v4 = v4.to_matrix(C)
m_v4
Out[9]:
$\displaystyle \left[\begin{matrix}-2\\5\\0\end{matrix}\right]$

2. Plot that vector

In [10]:
from xv.plotter.core.plot2d import Plotter
In [11]:
plotter = Plotter3D()
In [12]:
C_origin = C.origin.position_wrt(C.origin)
m_C_origin = C_origin.to_matrix(C)
In [13]:
arr_C_origin = np.array(m_C_origin).astype(np.float64)[:-1].flatten()
arr_v3 = np.array(m_v3).astype(np.float64)[:-1].flatten()
arr_v4 = np.array(m_v4).astype(np.float64)[:-1].flatten()
In [14]:
fig, ax = plotter.plot_vector(arr_C_origin, arr_v3, color = 'red')

plotter.plot_vector(arr_C_origin, arr_v4, color = 'blue', fig = fig,  ax = ax)
Out[14]:
(<Figure size 432x432 with 1 Axes>, <AxesSubplot:>)

3. Rotate and plot vector

In [15]:
theta  = np.pi/6
In [16]:
D = C.orient_new_axis('D', theta, C.k)
D
Out[16]:
$\displaystyle CoordSys3D\left(D, \left( \left[\begin{matrix}0.866025403784439 & 0.5 & 0\\-0.5 & 0.866025403784439 & 0\\0 & 0 & 1\end{matrix}\right], \ \mathbf{\hat{0}}\right), CoordSys3D\left(, \left( \left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right], \ \mathbf{\hat{0}}\right)\right)\right)$
In [17]:
D_origin = D.origin.position_wrt(D.origin)
m_D_origin = D_origin.to_matrix(D)
In [18]:
from sympy.vector import express
In [19]:
v3_D = express(v3, D)
v4_D = express(v4, D)
# display(v3_D, v4_D)
In [20]:
m_v3_D = v3_D.to_matrix(D)
m_v4_D = v4_D.to_matrix(D)
# display(m_v3_D, m_v4_D)
In [21]:
arr_D_origin = np.array(m_D_origin).astype(np.float64)[:-1].flatten()
arr_v3_D = np.array(m_v3_D).astype(np.float64)[:-1].flatten()
arr_v4_D = np.array(m_v4_D).astype(np.float64)[:-1].flatten()
In [22]:
fig, ax = plotter.plot_vector(arr_C_origin, arr_v3, color = 'red')
plotter.plot_vector(arr_D_origin, arr_v3_D, color = 'pink', fig = fig,  ax = ax)

plotter.plot_vector(arr_C_origin, arr_v4, color = 'blue', fig = fig,  ax = ax)
plotter.plot_vector(arr_D_origin, arr_v4_D, color = 'skyblue', fig = fig,  ax = ax)
Out[22]:
(<Figure size 432x432 with 1 Axes>, <AxesSubplot:>)

4. Move and plot

In [23]:
dx = 3
In [24]:
E = C.locate_new('E', dx * C.i)
E
Out[24]:
$\displaystyle CoordSys3D\left(E, \left( \left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right], \ (3)\mathbf{\hat{i}_{}}\right), CoordSys3D\left(, \left( \left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right], \ \mathbf{\hat{0}}\right)\right)\right)$
In [25]:
E_origin = express(E.origin.position_wrt(C.origin), E)
m_E_origin = E_origin.to_matrix(E)
In [30]:
v3_E = express(v3, E) + E_origin
v4_E = express(v4, E) + E_origin
# display(v3_E, v4_E)
In [31]:
m_v3_E = v3_E.to_matrix(E)
m_v4_E = v4_E.to_matrix(E)
# display(m_v3_E, m_v4_E)
In [28]:
arr_E_origin = np.array(m_E_origin).astype(np.float64)[:-1].flatten()
arr_v3_E = np.array(m_v3_E).astype(np.float64)[:-1].flatten()
arr_v4_E = np.array(m_v4_E).astype(np.float64)[:-1].flatten()
In [29]:
fig, ax = plotter.plot_vector(arr_C_origin, arr_v3, color = 'red')
plotter.plot_vector(arr_D_origin, arr_v3_D, color = 'pink', fig = fig,  ax = ax)
plotter.plot_vector(arr_E_origin, arr_v3_E, color = 'orange', fig = fig,  ax = ax)

plotter.plot_vector(arr_C_origin, arr_v4, color = 'blue', fig = fig,  ax = ax)
plotter.plot_vector(arr_D_origin, arr_v4_D, color = 'skyblue', fig = fig,  ax = ax)
plotter.plot_vector(arr_E_origin, arr_v4_E, color = 'm', fig = fig,  ax = ax)
Out[29]:
(<Figure size 432x432 with 1 Axes>, <AxesSubplot:>)
In [ ]:
 

Machine Learning

  1. Deal Banking Marketing Campaign Dataset With Machine Learning

TensorFlow

  1. Difference Between Scalar, Vector, Matrix and Tensor
  2. TensorFlow Deep Learning Model With IRIS Dataset
  3. Sequence to Sequence Learning With Neural Networks To Perform Number Addition
  4. Image Classification Model MobileNet V2 from TensorFlow Hub
  5. Step by Step Intent Recognition With BERT
  6. Sentiment Analysis for Hotel Reviews With NLTK and Keras
  7. Simple Sequence Prediction With LSTM
  8. Image Classification With ResNet50 Model
  9. Predict Amazon Inc Stock Price with Machine Learning
  10. Predict Diabetes With Machine Learning Algorithms
  11. TensorFlow Build Custom Convolutional Neural Network With MNIST Dataset
  12. Deal Banking Marketing Campaign Dataset With Machine Learning

PySpark

  1. How to Parallelize and Distribute Collection in PySpark
  2. Role of StringIndexer and Pipelines in PySpark ML Feature - Part 1
  3. Role of OneHotEncoder and Pipelines in PySpark ML Feature - Part 2
  4. Feature Transformer VectorAssembler in PySpark ML Feature - Part 3
  5. Logistic Regression in PySpark (ML Feature) with Breast Cancer Data Set

PyTorch

  1. Build the Neural Network with PyTorch
  2. Image Classification with PyTorch
  3. Twitter Sentiment Classification In PyTorch
  4. Training an Image Classifier in Pytorch

Natural Language Processing

  1. Spelling Correction Of The Text Data In Natural Language Processing
  2. Handling Text For Machine Learning
  3. Extracting Text From PDF File in Python Using PyPDF2
  4. How to Collect Data Using Twitter API V2 For Natural Language Processing
  5. Converting Text to Features in Natural Language Processing
  6. Extract A Noun Phrase For A Sentence In Natural Language Processing