Out[3]:
$\displaystyle \epsilon_{0}$
Out[4]:
$\displaystyle \frac{1}{4 \pi \epsilon_{0}}$
xA, yA, xB, yB, xP, yP = symbols('x_A, y_A, x_B, y_B, x_P, y_P')
display(xA, yA, xB, yB, xP, yP)
Out[8]:
$\displaystyle CoordSys3D\left(N, \left( \left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right], \ \mathbf{\hat{0}}\right)\right)$
Out[9]:
$\displaystyle \mathbf{\hat{0}}$
Out[10]:
$\displaystyle - \mathbf{\hat{i}_{N}}$
Out[11]:
$\displaystyle \mathbf{\hat{i}_{N}}$
Out[12]:
$\displaystyle (1.73)\mathbf{\hat{j}_{N}}$
Out[13]:
$\displaystyle (x_{P})\mathbf{\hat{i}_{N}} + (y_{P})\mathbf{\hat{j}_{N}}$
Out[14]:
$\displaystyle (x_{P} + 1)\mathbf{\hat{i}_{N}} + (y_{P})\mathbf{\hat{j}_{N}}$
Out[15]:
$\displaystyle (\frac{x_{P} + 1}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} + 1\right)^{2}\right)^{\frac{3}{2}}})\mathbf{\hat{i}_{N}} + (\frac{y_{P}}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} + 1\right)^{2}\right)^{\frac{3}{2}}})\mathbf{\hat{j}_{N}}$
Out[16]:
$\displaystyle (x_{P})\mathbf{\hat{i}_{N}} + (y_{P} - 1.73)\mathbf{\hat{j}_{N}}$
Out[17]:
$\displaystyle (\frac{0.0482838285676873 x_{P}}{\pi \epsilon_{0} \left(0.334124093688396 x_{P}^{2} + \left(0.578034682080925 y_{P} - 1\right)^{2}\right)^{\frac{3}{2}}})\mathbf{\hat{i}_{N}} + (\frac{0.0482838285676873 \left(y_{P} - 1.73\right)}{\pi \epsilon_{0} \left(0.334124093688396 x_{P}^{2} + \left(0.578034682080925 y_{P} - 1\right)^{2}\right)^{\frac{3}{2}}})\mathbf{\hat{j}_{N}}$
Out[18]:
$\displaystyle (x_{P} - 1)\mathbf{\hat{i}_{N}} + (y_{P})\mathbf{\hat{j}_{N}}$
Out[19]:
$\displaystyle (\frac{x_{P} - 1}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} - 1\right)^{2}\right)^{\frac{3}{2}}})\mathbf{\hat{i}_{N}} + (\frac{y_{P}}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} - 1\right)^{2}\right)^{\frac{3}{2}}})\mathbf{\hat{j}_{N}}$
Out[20]:
$\displaystyle (\frac{0.0482838285676873 x_{P}}{\pi \epsilon_{0} \left(0.334124093688396 x_{P}^{2} + \left(0.578034682080925 y_{P} - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{x_{P} - 1}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{x_{P} + 1}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} + 1\right)^{2}\right)^{\frac{3}{2}}})\mathbf{\hat{i}_{N}} + (\frac{y_{P}}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} + 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{y_{P}}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{0.0482838285676873 \left(y_{P} - 1.73\right)}{\pi \epsilon_{0} \left(0.334124093688396 x_{P}^{2} + \left(0.578034682080925 y_{P} - 1\right)^{2}\right)^{\frac{3}{2}}})\mathbf{\hat{j}_{N}}$
Out[22]:
$\displaystyle (\frac{0.0482838285676873 x_{P}}{\pi \epsilon_{0} \left(0.334124093688396 x_{P}^{2} + \left(0.578034682080925 y_{P} - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{x_{P} - 1}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{x_{P} + 1}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} + 1\right)^{2}\right)^{\frac{3}{2}}})\mathbf{\hat{i}_{N}} + (\frac{y_{P}}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} + 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{y_{P}}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{0.0482838285676873 \left(y_{P} - 1.73\right)}{\pi \epsilon_{0} \left(0.334124093688396 x_{P}^{2} + \left(0.578034682080925 y_{P} - 1\right)^{2}\right)^{\frac{3}{2}}})\mathbf{\hat{j}_{N}} = \mathbf{\hat{0}}$
Out[23]:
$\displaystyle \frac{0.0482838285676873 x_{P}}{\pi \epsilon_{0} \left(0.334124093688396 x_{P}^{2} + \left(0.578034682080925 y_{P} - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{x_{P} - 1}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{x_{P} + 1}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} + 1\right)^{2}\right)^{\frac{3}{2}}} = 0$
Out[27]:
$\displaystyle \frac{y_{P}}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} + 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{y_{P}}{4 \pi \epsilon_{0} \left(y_{P}^{2} + \left(x_{P} - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{0.0482838285676873 \left(y_{P} - 1.73\right)}{\pi \epsilon_{0} \left(0.334124093688396 x_{P}^{2} + \left(0.578034682080925 y_{P} - 1\right)^{2}\right)^{\frac{3}{2}}} = 0$