Histograms Plots

Histograms Plots

First, we need to know what frequency tables are. Suppose you have a set of members with various values. We can create a table that has various buckets of ranges of values in a column. Each bucket must have at least one value. Then we can count the number of members that fall into that bucket and note those counts against the buckets.

If bins is an integer, it defines the number of equal-width bins in the range.

If bins is a sequence, it defines the bin edges, including the left edge of the first bin and the right edge of the last bin; in this case, bins may be unequally spaced.

bins is interval. (default: 10)

In [1]:
import numpy as np
import matplotlib.pyplot as plt
In [2]:
scores = [1, 3, 5, 1, 2, 4, 4, 2, 5, 4, 3, 1, 2]
In [3]:
plt.hist(scores)
plt.show()
In [4]:
plt.hist(scores, bins = 5)
plt.show()

The histogram of one-dimensional data is a 2D figure.

In [5]:
plt.hist(scores, bins = 5, edgecolor="red")
plt.show()
In [6]:
plt.hist(scores, bins = 15, edgecolor="red")
plt.show()

Generate data from numpy

In [7]:
x = np.random.randn(1000)
x[:20]
Out[7]:
array([-0.29370312,  0.59815106, -2.28036393, -0.04559174, -1.5445421 ,
        0.43417658,  1.19630526, -0.08432642, -0.25696322,  0.14830154,
       -1.87736922,  1.21561781, -1.00686897, -1.47097589, -1.46002049,
        1.20130276,  0.19590106, -1.21030835,  0.48481554, -0.11487742])
In [8]:
plt.hist(x)
plt.show()
In [9]:
plt.hist(x, bins=30)
plt.show()
In [10]:
plt.hist(x, bins=30, density=True, histtype='step')
plt.show()

Multiple histogram

In [11]:
x1 = np.random.normal(0, 0.8, 1000)
x2 = np.random.normal(-2, 1, 1000)
x3 = np.random.normal(3, 2, 1000)
In [12]:
print(x1[:10])
print(x2[:10])
print(x3[:10])
[-0.17466897 -0.00390251 -0.36487302 -0.60805626  0.95551434 -0.49293387
  0.24564901  0.45859673 -0.48883817 -0.00886988]
[-3.63540801 -1.91342141 -2.05799681 -2.13110339 -1.53395593 -1.66502518
 -2.01662326 -0.6786185  -2.24570154 -2.86612388]
[3.14102811 4.13972813 5.83451644 2.35987244 2.99004212 2.67943733
 3.09266463 0.7885563  1.10564708 0.99033539]
In [13]:
plt.hist(x1)
plt.hist(x2)
plt.hist(x3);
In [14]:
kwargs = dict(alpha=0.3, histtype='stepfilled', bins=40)

plt.hist(x1, **kwargs)
plt.hist(x2, **kwargs)
plt.hist(x3, **kwargs)
plt.show()
In [15]:
kwargs = dict(alpha=0.3, histtype='stepfilled', bins=40, facecolor = 'g')

plt.hist(x1, **kwargs)
plt.hist(x2, **kwargs)
plt.hist(x3, **kwargs)
plt.show()

Title, legend , x-axis and y-axis label

In [16]:
kwargs = dict(alpha=0.3, histtype='stepfilled', bins=40)

plt.hist(x1, **kwargs, label = 'x1')
plt.hist(x2, **kwargs, label = 'x2')
plt.hist(x3, **kwargs, label = 'x3')

plt.title('Histogram')
plt.xlabel("X-axis")
plt.ylabel("y-axis")
plt.legend()

plt.show()

Two-Dimensional Histograms

In [17]:
n_points = 10000
bins = 50
In [18]:
x = np.random.randn(n_points)
y = np.random.randn(n_points)
In [19]:
print(x[:10])
print(y[:10])
[ 1.13593219  0.43899878  0.13246305  1.93051206 -1.16784114  0.56138205
  0.25602927  0.39125038 -0.08377408  1.00217832]
[-0.28071078 -0.70062961  0.32065733  0.94901202 -0.20692571 -0.36116829
  0.75868523 -1.06383209 -0.36806428  1.34531627]
In [20]:
plt.hist2d(x, y, bins=50)
plt.show()

Machine Learning

  1. Deal Banking Marketing Campaign Dataset With Machine Learning

TensorFlow

  1. Difference Between Scalar, Vector, Matrix and Tensor
  2. TensorFlow Deep Learning Model With IRIS Dataset
  3. Sequence to Sequence Learning With Neural Networks To Perform Number Addition
  4. Image Classification Model MobileNet V2 from TensorFlow Hub
  5. Step by Step Intent Recognition With BERT
  6. Sentiment Analysis for Hotel Reviews With NLTK and Keras
  7. Simple Sequence Prediction With LSTM
  8. Image Classification With ResNet50 Model
  9. Predict Amazon Inc Stock Price with Machine Learning
  10. Predict Diabetes With Machine Learning Algorithms
  11. TensorFlow Build Custom Convolutional Neural Network With MNIST Dataset
  12. Deal Banking Marketing Campaign Dataset With Machine Learning

PySpark

  1. How to Parallelize and Distribute Collection in PySpark
  2. Role of StringIndexer and Pipelines in PySpark ML Feature - Part 1
  3. Role of OneHotEncoder and Pipelines in PySpark ML Feature - Part 2
  4. Feature Transformer VectorAssembler in PySpark ML Feature - Part 3
  5. Logistic Regression in PySpark (ML Feature) with Breast Cancer Data Set

PyTorch

  1. Build the Neural Network with PyTorch
  2. Image Classification with PyTorch
  3. Twitter Sentiment Classification In PyTorch
  4. Training an Image Classifier in Pytorch

Natural Language Processing

  1. Spelling Correction Of The Text Data In Natural Language Processing
  2. Handling Text For Machine Learning
  3. Extracting Text From PDF File in Python Using PyPDF2
  4. How to Collect Data Using Twitter API V2 For Natural Language Processing
  5. Converting Text to Features in Natural Language Processing
  6. Extract A Noun Phrase For A Sentence In Natural Language Processing