importing-data.ipynb

In [1]:
import pandas as pd
from IPython.display import HTML
In [2]:
df = pd.read_csv('equations.csv')
In [3]:
df.head()
Out[3]:
equations field_of_study topic title latex_formula
0 Equations Trigonometry Trigonometric Properties Pythagorean Property - Sine and Cosine \sin ^2 \theta + \cos ^2 \theta = 1
1 Equations Trigonometry Trigonometric Definitions Sine Definition for a Right Triangle \sin \theta = \frac{{{\rm{Opposite Side}}}}{{...
2 Equations Trigonometry Trigonometric Definitions Cosine Definition for a Right Triangle \cos \theta = \frac{{{\rm{Adjacent Side}}}}{{...
3 Equations Trigonometry Trigonometric Definitions Tangent Definition for a Right Triangle \tan \theta = \frac{{{\rm{Opposite Side}}}}{{...
4 Equations Trigonometry Trigonometric Identities Double Angle Identity - Sine \sin 2\theta = 2\sin \theta \cos \theta
In [4]:
s = df['latex_formula'][0]
In [5]:
HTML(f'$${s}$$')
Out[5]:
$$\sin ^2 \theta + \cos ^2 \theta = 1$$
In [6]:
for s in df:
    
    display(HTML(f'$${s}$$'))
$$equations$$
$$field_of_study$$
$$topic$$
$$title$$
$$latex_formula$$
In [7]:
next(df.iterrows())
Out[7]:
(0,
 equations                                      Equations
 field_of_study                              Trigonometry
 topic                           Trigonometric Properties
 title             Pythagorean Property - Sine and Cosine
 latex_formula      \sin ^2 \theta  + \cos ^2 \theta  = 1
 Name: 0, dtype: object)
In [ ]:
 
In [8]:
for index, row in df.iterrows():
    title = row['title']
    latex_formula = row['latex_formula']
    
    print(title)
    display(HTML(f'$${latex_formula}$$'))
    print('\n')
    
Pythagorean Property - Sine and Cosine
$$\sin ^2 \theta + \cos ^2 \theta = 1$$

Sine Definition for a Right Triangle
$$\sin \theta = \frac{{{\rm{Opposite Side}}}}{{{\rm{Hypotenuse}}}}$$

Cosine Definition for a Right Triangle
$$\cos \theta = \frac{{{\rm{Adjacent Side}}}}{{{\rm{Hypotenuse}}}}$$

Tangent Definition for a Right Triangle
$$\tan \theta = \frac{{{\rm{Opposite Side}}}}{{{\rm{AdjacentSide}}}}$$

Double Angle Identity - Sine
$$\sin 2\theta = 2\sin \theta \cos \theta$$

Double Angle Identity - Cosine
$$\cos 2\theta = \cos ^2 \theta - \sin ^2 \theta = 2\cos ^2 \theta - 1$$

Half Angle Identity - Sine
$$\sin \frac{\theta }{2} = \sqrt {\frac{{1 - \cos \theta }}{2}}$$

Half Angle Identity - Cosine
$$\cos \frac{\theta }{2} = \sqrt {\frac{{1 + \cos \theta }}{2}}$$

Sum and Difference of Angles Identity - Sine
$$\sin \left( {\theta _1 \pm \theta _2 } \right) = \sin \theta _1 \cos \theta _2 \pm \cos \theta _1 \sin \theta _2$$

Sum and Difference of Angles Identity - Cosine
$$\cos \left( {\theta _1 \pm \theta _2 } \right) = \cos \theta _1 \cos \theta _2 \mp \sin \theta _1 \sin \theta _2$$

Additive Identity Property
$${\rm{a + 0 = a}} $$

Additive Inverse Property
$$a + \left( { - a} \right) = 0 $$

Associative Property of Addition
$$\left( {a + b} \right) + c = a + \left( {b + c} \right) $$

Commutative Property of Addition
$$a + b = b + a $$

Definition of Subtraction
$$a - b = a + \left( { - b} \right) $$

Multiplicative Identity
$$a \times 1 = a $$

Multiplicative Inverse
$$a \times \frac{1}{a} = 1 $$

Zero Multiplication Property
$$a \times 0 = 0 $$

Associative Property of Multiplication
$$\left( {a \times b} \right) \times c = a \times \left( {b \times c} \right) = a \times b \times c $$

Definition of Division
$$\frac{a}{b} = a \times \left( {\frac{1}{b}} \right) $$

Square of a First Order Polynomial
$$\left( {a + b} \right)^2 = a^2 + 2ab + b^2 $$

Polynomial FOIL operation
$$\left( {a + b} \right)\left( {c + d} \right) = ac + ad + bc + bd $$

Difference of Squares Factorization
$$a^2 - b^2 = \left( {a + b} \right)\left( {a - b} \right) $$

Sum of Cubes Factorization
$$a^3 + b^3 = \left( {a + b} \right)\left( {a^2 - ab + b^2 } \right) $$

Difference of Cubes Factorization
$$a^3 - b^3 = \left( {a - b} \right)\left( {a^2 + ab + b^2 } \right) $$

Second Order Polynomial Factorization
$$x^2 + x\left( {a + b} \right) + ab = \left( {x + a} \right)\left( {x + b} \right) $$

Quadratic Formula
$$\begin{array}{*{20}c} {x = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}} & {{\rm{when}}} & {ax^2 + bx + c = 0} \\ \end{array}$$

Exponent Equal to Zero Rule
$$x^0 = 1 $$

Exponent Equal to One Rule
$$x^1 = x $$

Addition of Exponents Rule
$$x^a x^b = x^{\left( {a + b} \right)} $$

Distributive Property of Exponents
$$x^a y^a = \left( {xy} \right)^a $$

Power Rule of Exponents
$$\left( {x^a } \right)^b = x^{\left( {ab} \right)} $$

Fractional Exponent to Fractional Root Relationship
$$x^{\left( {\frac{a}{b}} \right)} = \sqrt[b]{{x^a }} $$

Definition of Square Root
$$x^{\left( {\frac{1}{2}} \right)} = \sqrt x $$

Negative Exponent Definition
$$x^{ - a} = \frac{1}{{x^a }} $$

Subtraction of Exponents Rule
$$x^{\left( {a - b} \right)} = \frac{{x^a }}{{x^b }} $$

Definition of a Logarithm
$$y = \log _b \left( x \right){\rm{ iff }}x = b^y $$

Logarithm of One
$$\log _b \left( 1 \right) = 0 $$

Logarithmic Identity Property
$$\log _b \left( b \right) = 1 $$

Sum of Logarithms Property
$$\log _b \left( {xy} \right) = \log _b \left( x \right) + \log _b \left( y \right) $$

Difference of Logarithms Property
$$\log _b \left( {\frac{x}{y}} \right) = \log _b \left( x \right) - \log _b \left( y \right) $$

Logarithm of an Exponential
$$\log _b \left( {x^n } \right) = n\log _b \left( x \right) $$

Logarithm Base Conversion
$$\log _b \left( x \right) = \log _b \left( c \right)\log _c \left( x \right) = \frac{{\log _c \left( x \right)}}{{\log _c \left( b \right)}} $$

SURD Multiplication
$$a\sqrt b \times c\sqrt d = ac\sqrt {bd} $$

SURD Division
$$\frac{{a\sqrt b }}{{c\sqrt d }} = \frac{a}{c}\sqrt {\frac{b}{d}} $$

SURD Addition and Subtraction
$$a\sqrt b \pm c\sqrt b = \left( {a \pm c} \right)\sqrt b $$

Integral of powers not equal to -1
$$\int {x^n } dx = \frac{{x^{n + 1} }}{{n + 1}},(n \ne - 1)$$

Integration by parts
$$\int {u\frac{{dv}}{{dx}}} dx = uv - \int {\frac{{du}}{{dx}}} vdx$$

Integral of reciprocal
$$\int {\frac{1}{x}} dx = \ln \left| x \right| + c$$

Integral of cosine
$$\int {\cos (ax)} dx = \frac{1}{a}\sin (ax) + c$$

Integral of sine
$$\int {\sin (ax)} dx = - \frac{1}{a}\cos (ax) + c$$

Integral of tangent
$$\int {\tan (ax)} dx = - \frac{1}{a}\ln \left| {\cos (ax)} \right| + c$$

Integral of cosecant
$$\int {\csc (ax)} dx = \frac{1}{a}\ln \left| {\tan \left( {\frac{{ax}}{2}} \right)} \right| + c$$

Integral of secant
$$\int {\sec (ax)} dx = \frac{1}{a}\ln \left| {\tan \left( {\frac{{ax}}{2} + \frac{\pi }{4}} \right)} \right| + c$$

Limit of Sine X over X as X Approaches Zero
$$\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1$$

Limit of Tangent X over X as X Approaches Zero
$$\mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{x} = 1$$

Area of a circle
$$A = \pi r^2$$

Area of an ellipse
$$A = \pi r_1 r_2$$

Area of an equilateral triangle
$$A = \frac{{h^2 \sqrt 3 }}{3}$$

Area of a parallelogram
$$A = bh$$

Area of a rectangle
$$A = lw$$

Area of a regular polygon
$$A = \frac{{nsr}}{2} = \frac{{pr}}{2}$$

Area of a rhombus
$$A = \frac{{x_1 x_2 }}{2}$$

Area of a sector
$$A = \frac{{\theta r^2 }}{2}$$

Area of a square
$$A = x^2$$

Area of a trapezoid
$$A = \frac{1}{2}(x_1 + x_2 )h$$

Area of a triangle
$$A = \frac{1}{2}bh$$

Volume of a cone
$$V = \frac{{Bh}}{3} = \frac{{\pi r^2 h}}{3}$$

Volume of a sphere
$$V = \frac{{4\pi r^3 }}{3}$$

Volume of a pyramid
$$V = \frac{{Bh}}{3}$$

Volume of a cube
$$V = x^3$$

Volume of a cuboid
$$V = lhw$$

Volume of a cylinder
$$V = Bh = \pi r^2 h$$

Volume of a prism
$$V = Bh$$

Ideal gas equation
$$PV = nRT$$

kinetic energy
$$E_k = \frac{1}{2}mv^2$$

equation of linear motion
$$x\left( t \right) = x_o + vt + \frac{1}{2}at^2$$

Surface area of a sphere
$$S = 4\pi r^2$$

Surface area of a cylinder
$$S = 2\pi r^2 + 2\pi rh$$

Surface area of a cuboid
$$S = 2lw + 2lh + 2wh$$

Surface area of a cube
$$S = 6x^2$$

Refractive index
$$n = \frac{{\sin {\rm{ }}i}}{{\sin {\rm{ }}r}} = \frac{{{\rm{depth}}}}{{{\rm{apparent depth}}}}$$

Einstein's relativistic mass-energy relation
$$E = mc^2$$

spring constant
$$k = \frac{F}{x}$$

simple harmonic motion acceleration
$$a = - \omega ^2 x = - \omega ^2 r\sin (\omega t)$$

Adibiatic change
$$PV = k$$

Ampere's law
$$\oint_C {Bd\ell = \mu _0 I_C }$$

Angular Momentum
$$M = I\omega$$

Beat frequency
$$f = f_1 - f_2$$

Charles' Law
$$\frac{V}{t} = k$$

de Broglie wavelength
$$\lambda = \frac{h}{{mv}}$$

Voltage equation
$$V = IR$$

Zurich sunspot number
$$R = k(f + 10g)$$

Yukawa Potential
$$V = \frac{{V_\theta e^{ - kr} }}{r}$$

Young's modulus
$$\Upsilon = \frac{{{F \mathord{\left/ {\vphantom {F A}} \right. \kern-\nulldelimiterspace} A}}}{{{{\Delta L} \mathord{\left/ {\vphantom {{\Delta L} L}} \right. \kern-\nulldelimiterspace} L}}} = \frac{{{\rm{Stress}}}}{{{\rm{Strain}}}}$$

Newton's Second Law (Force)
$$F = ma$$

Z-transform time domain convolution (z domain multiplication) property
$$h(n) * x(n) \Leftrightarrow H(z)X(z)$$

Z-transform linearity property
$$a_1 x_1 (n) + a_2 x_2 (n) \Leftrightarrow a_1 X_1 (z) + a_2 X_2 (z)$$

Z-transform translation (time shift) property
$$x(n - m) \Leftrightarrow z^{ - m} X(z)$$

Z-transform multiplication by an exponential (z domain scaling) property
$$a^n x\left( n \right) \Leftrightarrow X\left( {\frac{z}{a}} \right)$$

Z-transform multiplication by a ramp (z domain differentiation) property
$$nx\left( n \right) \Leftrightarrow - z\frac{{dX(z)}}{{dz}}$$

Z-transform time domain multiplication (z domain convolution) property
$$h(n)x(n) \Leftrightarrow \frac{1}{{2\pi j}}\oint_C {H\left( v \right)X\left( {z/v} \right)\mathop v\nolimits^{ - 1} dv}$$

Z-transform initial value theorem
$$x\left( {0^ - } \right) = \mathop {\lim }\limits_{z \to \infty } X\left( z \right)$$

Z-transform final value theorem.  Valid only if polues of (z-1)X(z) are inside the unit circle.
$$x\left( \infty \right) = \mathop {\lim }\limits_{z \to 1} \left( {z - 1} \right)X\left( z \right)$$

Z-transform of delta
$$\delta (n) \Leftrightarrow 1$$

Z-transform of shifted delta
$$\delta (n - m) \Leftrightarrow z^{ - m} ,\left| z \right| > 1$$

Z-transform of unit step function
$$u(n) \Leftrightarrow \frac{z}{{z - 1}},\left| z \right| > 1$$

Z-transform involving the unit step function
$$nu(n) \Leftrightarrow \frac{z}{{\left( {z - 1} \right)^2 }},\left| z \right| > 1$$

Z-transform involving the unit step function
$$n^2 u(n) \Leftrightarrow \frac{{z\left( {z + 1} \right)}}{{\left( {z - 1} \right)^3 }},\left| z \right| > 1$$

Z-transform involving the unit step function
$$n^3 u(n) \Leftrightarrow \frac{{z\left( {z^2 + 4z + 1} \right)}}{{\left( {z - 1} \right)^4 }},\left| z \right| > 1$$

Z-transform involving the unit step function and an exponential
$$a^n u(n) \Leftrightarrow \frac{z}{{\left( {z - a} \right)}},\left| z \right| > \left| a \right|$$

Z-transform involving the unit step function and an exponential
$$na^n u(n) \Leftrightarrow \frac{{az}}{{\left( {z - a} \right)^2 }},\left| z \right| > \left| a \right|$$

Z-transform involving the unit step function and an exponential
$$n^2 a^n u(n) \Leftrightarrow \frac{{az(z + a)}}{{\left( {z - a} \right)^3 }},\left| z \right| > \left| a \right|$$

Z-transform involving the unit step function and an exponential
$$n^3 a^n u(n) \Leftrightarrow \frac{{az(z^2 + 4az + a^2 )}}{{\left( {z - a} \right)^4 }},\left| z \right| > \left| a \right|$$

Z-transform involving the unit step function and an exponential
$$na^{n - 1} u(n) \Leftrightarrow \frac{z}{{\left( {z - a} \right)^2 }},\left| z \right| > \left| a \right|$$

Z-transform involving the unit step function and an exponential
$$\frac{1}{2}n(n - 1)a^{n - 2} u(n) \Leftrightarrow \frac{z}{{\left( {z - a} \right)^3 }},\left| z \right| > \left| a \right|$$

Z-transform involving the unit step function and an exponential
$$\frac{1}{6}n(n - 1)(n - 2)a^{n - 3} u(n) \Leftrightarrow \frac{z}{{\left( {z - a} \right)^4 }},\left| z \right| > \left| a \right|$$

Z-transform involving the unit step function and an exponential
$$e^n u(n) \Leftrightarrow \frac{z}{{\left( {z - e} \right)}},\left| z \right| > \left| e \right|$$

Z-transform involving the unit step function and sine
$$\sin (\omega _o n)u(n) \Leftrightarrow \frac{{z\sin \omega _o }}{{\left( {z^2 - 2z\cos \omega _o + 1} \right)}},\left| z \right| > 1$$

Z-transform involving the unit step function and cosine
$$\cos (\omega _o n)u(n) \Leftrightarrow \frac{{z(z - \cos \omega _o )}}{{\left( {z^2 - 2z\cos \omega _o + 1} \right)}},\left| z \right| > 1$$

Z-transform involving the unit step function and cosine
$$\cos (\omega _o n + \theta )u(n) \Leftrightarrow \frac{{z[z\cos \theta - \cos (\omega _o - \theta )]}}{{\left( {z^2 - 2z\cos \omega _o + 1} \right)}},\left| z \right| > 1$$

Z-transform involving the unit step function and sine
$$\sin (\omega _o n + \theta )u(n) \Leftrightarrow \frac{{z[z\sin \theta + \sin (\omega _o - \theta )]}}{{\left( {z^2 - 2z\cos \omega _o + 1} \right)}},\left| z \right| > 1$$

Z-transform involving the unit step function and hyperbolic sine
$$\sinh (\omega _o n)u(n) \Leftrightarrow \frac{{z\sinh \omega _o }}{{\left( {z^2 - 2z\cosh \omega _o + 1} \right)}},\left| z \right| > e^{\omega _o }$$

Z-transform involving the unit step function and hyperbolic cosine
$$\cosh (\omega _o n)u(n) \Leftrightarrow \frac{{z(z - \cosh \omega _o )}}{{\left( {z^2 - 2z\cosh \omega _o + 1} \right)}},\left| z \right| > e^{\omega _o }$$

Laplace transform of Kroeneker delta function
$$\delta (t) \Leftrightarrow 1$$

Laplace transform of unit step function times a constant (K)
$$Ku(t) \Leftrightarrow \frac{K}{s}$$

Laplace transform involving the unit step function
$$tu(t) \Leftrightarrow \frac{1}{{s^2 }}$$

Laplace transform involving the unit step function
$$t^n u(t) \Leftrightarrow \frac{{n!}}{{s^{n + 1} }}$$

Laplace transform involving the unit step function and an exponential
$$Ke^{ - at} u(t) \Leftrightarrow \frac{K}{{s + a}}$$

Laplace transform involving the unit step function and an exponential
$$t^n e^{ - at} u(t) \Leftrightarrow \frac{{n!}}{{(s + a)^{n + 1} }}$$

Laplace transform involving the unit step function and sine
$$\sin (\Omega t)u(t) \Leftrightarrow \frac{\Omega }{{(s^2 + \Omega ^2 )}}$$

Laplace transform involving the unit step function and cosine
$$\cos (\Omega t)u(t) \Leftrightarrow \frac{s}{{(s^2 + \Omega ^2 )}}$$

Laplace transform involving the unit step function, cosine, and an exponential
$$e^{ - at} \cos (\Omega t)u(t) \Leftrightarrow \frac{{s + a}}{{(s + a)^2 + \Omega ^2 }}$$

Laplace transform involving the unit step function, sine, and an exponential
$$e^{ - at} \sin (\Omega t)u(t) \Leftrightarrow \frac{\Omega }{{(s + a)^2 + \Omega ^2 }}$$

Laplace transform linearity property
$$a_1 x_1 (t) + a_2 x_2 (t) \Leftrightarrow a_1 X_1 (s) + a_2 X_2 (s)$$

Laplace transform Nth time domain derivative property
$$\frac{{d^n x(t)}}{{dt^n }} \Leftrightarrow s^n X(s)$$

Laplace transform integral property
$$\int\limits_0^t {x(\tau )d} \tau \Leftrightarrow \frac{1}{s}X(s)$$

Laplace transform time domain shifting property
$$x(t - a)u(t - a) \Leftrightarrow e^{ - as} X(s + a)$$

Laplace transform time domain scaling property
$$x(at)u(t) \Leftrightarrow \frac{1}{a}X\left( {\frac{s}{a}} \right)$$

Laplace transform time varying coefficient (s domain differentiation) property
$$tx(t)u(t) \Leftrightarrow \frac{{ - dX(s)}}{{ds}}$$

Laplace transform time domain linear convolution (s domain multiplication) property
$$\int\limits_0^\infty {x_1 (\tau )x_2 (t - \tau )d\tau } \Leftrightarrow X_1 (s)X_2 (s)$$

Laplace transform final value theorem (valid if poles of sX(s) are in left half of s plane).
$$x(\infty ) = \mathop {\lim }\limits_{s \to 0} sX(s)$$

Laplace transform initial value theorem
$$x(0^ + ) = \mathop {\lim }\limits_{s \to \infty } sX(s)$$

Laplace transform definition
$$X(s) = \int\limits_0^\infty {x(t)e^{ - st} dt}$$

Z transform definition
$$X(z) \buildrel \Delta \over = \sum\limits_{n = - \infty }^\infty {x(n)z^{ - n} }$$

Discrete-Time Fourier linearity theorem
$$ax(n) + by(n) \Leftrightarrow aX(e^{j\omega } ) + bY(e^{j\omega } )$$

Discrete-Time Fourier time shift property
$$x(n - n_o ) \Leftrightarrow e^{ - j\omega n_o } X(e^{j\omega } )$$

Discrete-Time Fourier frequency shift property
$$e^{ + j\omega _o n} x(n) \Leftrightarrow X(e^{j(\omega - \omega _o )} )$$

Discrete-Time Fourier time reversal property
$$x( - n) \Leftrightarrow X(e^{ - j\omega } )$$

Discrete-Time Fourier time reversal property; x(n) real
$$x( - n) \Leftrightarrow X^* (e^{j\omega } )$$

Discrete-Time Fourier frequency differentiation property
$$nx(n) \Leftrightarrow j\frac{{dX(e^{j\omega } )}}{{d\omega }}$$

Discrete-Time Fourier time/space convolution property
$$x(n) * y(n) \Leftrightarrow X(e^{j\omega } )Y(e^{j\omega } )$$

Discrete-Time Fourier windowing, modulation, frequency convolution property
$$x(n)y(n) \Leftrightarrow \frac{1}{{2\pi }}\int\limits_{ - \pi }^\pi {X(e^{j\theta } )Y(e^{j(\omega - \theta )} )d\theta }$$

Discrete-Time Fourier transform - Parseval's Theorem
$$\sum\limits_{n = - \infty }^\infty {\left| {x(n)} \right|^2 } = \frac{1}{{2\pi }}\int\limits_{ - \pi }^\pi {\left| {X(e^{j\omega } )} \right|^2 d\omega }$$

Discrete-Time Fourier transform - Parseval's Theorem
$$\sum\limits_{n = - \infty }^\infty {x(n)y^* (n)} = \frac{1}{{2\pi }}\int\limits_{ - \pi }^\pi {X(e^{j\omega } )Y^* (e^{j\omega } )d\omega }$$

Discrete-Time Fourier transform of delta
$$a\delta (n) \Leftrightarrow a$$

Discrete-Time Fourier transform of shifted delta
$$\delta (n - n_o ) \Leftrightarrow e^{ - j\omega n_o }$$

Discrete-Time Fourier transform of a constant
$$a \Leftrightarrow 2\pi a\sum\limits_{k = - \infty }^\infty {\delta (\omega + 2\pi k)} ,( - \infty < n < \infty )$$

Discrete-Time Fourier transform of unit step function
$$u(n) \Leftrightarrow \frac{1}{{(1 - e^{ - j\omega } )}} + \sum\limits_{k = - \infty }^\infty {\pi \delta (\omega + 2\pi k)}$$

Discrete-Time Fourier transform of unit step function and exponential
$$a^n u(n) \Leftrightarrow \frac{1}{{(1 - ae^{ - j\omega } )}},\left| a \right| < 1$$

Discrete-Time Fourier transform of unit step function and exponential
$$(n + 1)a^n u(n) \Leftrightarrow \frac{1}{{(1 - ae^{ - j\omega } )^2 }},\left| a \right| < 1$$

Discrete-Time Fourier transform of complex exponential
$$e^{j\omega _o n} \Leftrightarrow 2\pi \sum\limits_{k = - \infty }^\infty {\delta (\omega - \omega _o + 2\pi k)}$$

Discrete-Time Fourier transform of a sinc sequence
$$\frac{{\sin (\omega _c n)}}{n} \Leftrightarrow X(e^{j\omega } ) = \left\{ {\begin{array}{*{20}c} {1,\left| \omega \right| \le \omega _c } \\ {0,\omega _c < \left| \omega \right| \le \omega _c } \\ \end{array}} \right.$$

Discrete-Time Fourier transform of a boxcar sequence
$$x(n) = \left\{ {\begin{array}{*{20}c} {1,0 \le n \le N - 1} \\ {0,{\rm{otherwise}}} \\ \end{array} \Leftrightarrow } \right.\frac{{\sin (\omega N/2)}}{{\sin (\omega /2)}}e^{ - j\omega (N - 1)/2}$$

Discrete-Time Fourier transform definition
$$X(e^{j\omega } ) = x(n)e^{ - j\omega n} ,\omega {\rm{in radians}}$$

Black Hole Entropy as derived by Stephen Hawking
$$S = \frac{{Akc^3 }}{{4\hbar G}}$$

Time-independent, one-dimensional Schr
$$- \frac{{\hbar ^2 }}{{2m}}\frac{{d^2 \psi (x)}}{{dx^2 }} + U(x)\psi (x) = E\psi (x)$$

Time-dependent, one-dimensional Schr
$$- \frac{{\hbar ^2 }}{{2m}}\frac{{\partial ^2 \psi (x,t)}}{{\partial x^2 }} + U(x)\psi (x,t) = i\hbar \frac{{\partial \psi (x,t)}}{{\partial t}}$$

Ohm's Law
$$V = IR = I\left( {\frac{L}{{\sigma A}}} \right) = I\left( {\frac{{\rho L}}{A}} \right)$$

Bohr Radius
$$a_0 = \frac{{\hbar ^2 }}{{m_e ke^2 }}$$

Radii of stable orbits in the Bohr model
$$r = n^2 \frac{{\hbar ^2 }}{{m_e kZe^2 }} = n^2 \frac{{a_0 }}{Z}$$

Phase difference between the first and last waves for a single-slit diffraction pattern
$$\phi = \frac{{2\pi }}{\lambda }a\sin \theta$$

single-slit diffraction pattern points of zero intensity
$$a\sin \theta = m\lambda$$

Definition of intensity
$$I = \frac{{P_{av} }}{A}$$

Superposition of standing waves on a string with both ends fixed
$$y(x,t) = \sum\limits_n {A_n \cos (\omega _n t + \delta _n )\sin (k_n x)}$$

Standing-wave function
$$y(x,t) = A_n \cos (\omega _n t + \delta _n )\sin (k_n x)$$

Energy transmitted by a harmonic wave
$$\Delta E = \frac{1}{2}\mu \omega ^2 A^2 \Delta x = \frac{1}{2}\mu \omega ^2 A^2 \upsilon \Delta t$$

Power transmitted by a harmonic wave
$$P = \frac{{dE}}{{dt}} = \frac{1}{2}\mu \omega ^2 A^2 \upsilon$$

Harmonic wave function
$$y(x,t) = A\sin \left[ {2\pi \left( {\frac{x}{\lambda } - \frac{t}{T}} \right)} \right]$$

Harmonic wave function
$$y(x,t) = A\sin \left[ {k(x - \upsilon t)} \right]$$

Velocity at resonance frequency of a driven oscillator
$$\upsilon = + A\omega \cos \left( {\omega t} \right) = - A\omega \sin \left( {\omega t - \frac{\pi }{2}} \right)$$

Amplitude of a driven oscillation
$$A = \frac{{F_0 }}{{\sqrt {m^2 \left( {\omega _0^2 - \omega ^2 } \right)^2 + b^2 \omega ^2 } }}$$

Displacement of a driven oscillator
$$x = A\cos \left( {\omega t + \delta } \right)$$

Displacement of a slightly damped oscillator
$$x = A_0 \exp \left( { - \frac{b}{{2m}}t} \right)\cos \left( {\omega 't + \delta } \right)$$

Kinetic energy of simple harmonic motion
$$K = \frac{1}{2}kA^2 \sin ^2 \left( {\omega t + \delta } \right)$$

Potential energy of simple harmonic motion
$$U = \frac{1}{2}kA^2 \cos ^2 \left( {\omega t + \delta } \right)$$

Total energy of simple harmonic motion
$$E_{Total} = \frac{1}{2}kA^2$$

Viscous flow
$$F = \eta \frac{{\upsilon A}}{z}$$

Continuity equation
$$I_V = \upsilon A = {\rm{constant}}$$

Hydraulic lift
$$F_2 = \frac{{F_1 }}{{A_1 }}A_2 = \frac{{A_2 }}{{A_1 }}F_1$$

Shear modulus defined
$$M_S = \frac{{{{F_S } \mathord{\left/ {\vphantom {{F_S } A}} \right. \kern-\nulldelimiterspace} A}}}{{{{\Delta x} \mathord{\left/ {\vphantom {{\Delta x} L}} \right. \kern-\nulldelimiterspace} L}}} = \frac{{{{F_S } \mathord{\left/ {\vphantom {{F_S } A}} \right. \kern-\nulldelimiterspace} A}}}{{{\rm{tan}}\theta }} = \frac{{{\rm{Shear Stress}}}}{{{\rm{Shear Strain}}}}$$

Shear stress
$${\rm{Shear Stress = }}\frac{{{\rm{F}}_{\rm{S}} }}{{\rm{A}}}$$

Stress
$${\rm{Stress}} = \frac{F}{A}$$

Centripetal acceleration
$$a = \frac{{\upsilon ^2 }}{r}$$

Instantaneous Acceleration
$$a = \frac{{d\upsilon }}{{dt}} = \frac{{d^2 x}}{{dt^2 }}$$

Velocity
$$\upsilon ^2 = \upsilon _0 ^2 + 2a\Delta x$$

Displacement
$$\Delta x = x - x_0 = \upsilon _0 t + \frac{1}{2}at^2$$

Velocity
$$\upsilon = \upsilon _0 + at$$

Average acceleration
$$a_{av} = \frac{{\Delta \upsilon }}{{\Delta t}}$$

Maxwell's equation - Faraday's law
$$\oint_C {E \cdot d\ell = - \frac{d}{{dt}}} \int_S {B_n dA}$$

Maxwell's equation - Gauss's law
$$\oint_S {E_n dA = \frac{1}{{\varepsilon _0 }}} Q_{inside}$$

Self inductance of a solenoid
$$L = \frac{{\phi _m }}{I} = \mu _0 n^2 A\ell$$

Magnetic flux defined
$$\phi _m = \int_S {N{\bf{B}} \cdot {\bf{\hat n}}dA = } \int_S {NB_n dA}$$

EMF (Electromotive Force) defined
$$\xi = \oint_C {E \cdot d\ell }$$

Resistance
$$R = \frac{L}{{\sigma A}} = \frac{{\rho L}}{A}$$

Electric current
$$I = \frac{{\Delta Q}}{{\Delta t}} = nqA\upsilon _d$$

Number density of charge carriers
$$n = \frac{I}{{Aq\upsilon _d }} = \frac{I}{{wte\upsilon _d }}$$

Current in a conducting strip
$$I = nAq\upsilon _d$$

Magnetic dipole moment of a current loop
$$m = NIA\hat n$$

Capacitance of a cylindrical capacitor
$$C = \frac{Q}{V} = \frac{{2\pi \varepsilon _0 L}}{{\ln \left( {{b \mathord{\left/ {\vphantom {b a}} \right. \kern-\nulldelimiterspace} a}} \right)}}$$

Capacitance of a parallel-plate capacitor
$$C = \frac{Q}{V} = \frac{{\varepsilon _0 A}}{s}$$

Potential due to a line charge
$$V = - 2k\lambda \ln \frac{r}{a}$$

Change in potential
$$\Delta V = V_b - V_a = \frac{{\Delta U}}{{q_0 }} = - \int_a^b {E \cdot d\ell }$$

Change in electrostatic potential energy for a point charge
$$\Delta U = U_b - U_a = \int_a^b {dU} = - \int_a^b {q_0 E \cdot d\ell }$$

Gauss's law
$$\phi _{net} = \int_S {E_n dA = } \frac{1}{{\varepsilon _0 }}Q_{inside} = 4\pi kQ_{inside}$$

Electric flux defined
$$\phi = \int_S {{\bf{E}} \cdot {\bf{\hat n}}dA}$$

Electric field on the axis of a ring charge
$$E_x = \frac{{kQx}}{{\left( {x^2 + a^2 } \right)^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} }}$$

Acceleration of a particle in an electric field
$$a = \frac{q}{m}E$$

Net power radiated by an object
$$P_{net} = e\sigma A\left( {T^4 - T_0^4 } \right)$$

Radiation absorbed by an object
$$P_a = e\sigma AT_0^4$$

Stefan-Boltzmann law
$$P = e\sigma AT^4$$

Thermal resistance
$$R = \frac{{\Delta x}}{{kA}}$$

Thermal conduction
$$I = \frac{{\Delta Q}}{{\Delta t}} = kA\frac{{\Delta T}}{{\Delta x}}$$

Van der Waals equation
$$\left( {P + \frac{{an^2 }}{{V^2 }}} \right)\left( {V - bn} \right) = nRT$$

Speed of sound waves in a fluid
$$\upsilon = \sqrt {\frac{B}{\rho }}$$

Phase constant of a driven oscillation
$$\tan \delta = \frac{{b\omega }}{{m\left( {\omega _0^2 - \omega ^2 } \right)}}$$

Angular frequency for a damped oscillation
$$\omega ' = \omega _0 \sqrt {1 - \left( {\frac{b}{{2m\omega _0 }}} \right)^2 } = \omega _0 \sqrt {1 - \frac{1}{{4Q^2 }}}$$

Energy change in a damped oscillation
$$\frac{{\Delta E}}{E} = - \frac{b}{m}T$$

Energy change in a damped oscillation
$$E = E_0 \exp \left( { - \frac{b}{m}t} \right) = E_0 \exp \left( { - \frac{t}{\tau }} \right)$$

Compressibility
$$k = \frac{1}{B} = - \frac{{{{\Delta V} \mathord{\left/ {\vphantom {{\Delta V} V}} \right. \kern-\nulldelimiterspace} V}}}{P}$$

Bulk modulus defined
$$B = - \frac{P}{{{{\Delta V} \mathord{\left/ {\vphantom {{\Delta V} V}} \right. \kern-\nulldelimiterspace} V}}}$$

Poynting vector
$$S = \frac{{E \times B}}{{\mu _0 }}$$

Electric field and magnetic field relationship for an electromagnetic wave
$$E = cB$$

Wave equation for magnetic field
$$\frac{{\partial ^2 B}}{{\partial x^2 }} = \frac{1}{{c^2 }}\frac{{\partial ^2 B}}{{\partial t^2 }}$$

Magnetic field inside a solenoid
$$B = \mu _0 nI$$

Biot-Savart law
$$d{\bf{B}} = \frac{{\mu _0 }}{{4\pi }}\frac{{Id\ell \times {\bf{\hat r}}}}{{r^2 }}$$

Torque on a current loop
$$\tau = m \times B$$

Magnetic force on a moving charge
$$F = q{\bf{v}} \times {\bf{B}}$$

Rydberg constant
$$R = \frac{{m_e k^2 e^4 }}{{4\pi c\hbar ^3 }}$$

Schwarzschild Black Hole Radius
$$R = \frac{{2GM}}{{c^2 }}$$

Black Hole Temperature
$$T = \frac{{\hbar c^3 }}{{8\pi kGM}}$$

Binomial Coefficient
$$\left( {\begin{array}{*{20}c} n \\ k \\ \end{array}} \right) = \frac{{n!}}{{k!\left( {n - k} \right)!}}$$

Binomial Equation
$$y = \frac{{n!}}{{k!\left( {n - k} \right)!}}p^k q^{n - k} = \left( {\begin{array}{*{20}c} n \\ k \\ \end{array}} \right)p^k q^{n - k}$$

Mean of Binomial Distribution
$$M_b = np$$

Variance of Binomial Distribution
$$\sigma ^2 _b = npq$$

Standard Normal Distribution
$$y = \frac{1}{{\sqrt {2\pi } }}e^{ - \frac{{z^2 }}{2}} = .3989e^{ - 5z^2 }$$

Euler's Constant
$$e = \mathop {\lim }\limits_{n \to \infty } \left( {1 + \frac{1}{n}} \right)^n$$

Gaussian Normal Distribution
$$P(x) = \frac{1}{{\sigma \sqrt {2\pi } }}e^{{{ - \left( {x - \mu } \right)^2 } \mathord{\left/ {\vphantom {{ - \left( {x - \mu } \right)^2 } {2\sigma ^2 }}} \right. \kern-\nulldelimiterspace} {2\sigma ^2 }}}$$

nth moment about point a
$$\mu _n \left( a \right) = \sum {\left( {x - a} \right)^n P\left( x \right)}$$

Mean about zero
$$\mu = \mu _1 = \sum {xP\left( x \right)}$$

Variance or second moment about the Mean
$$\sigma ^2 = \mu _2 = \sum {\left( {x - \mu _1 } \right)^2 P\left( x \right)}$$

Fisher Skewness
$$\gamma _1 = \frac{{\mu _3 }}{{\mu _2 ^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} }} = \frac{{\mu _3 }}{{\sigma ^3 }}$$

Standard Deviation
$$\sigma = \sqrt {\mu _2 }$$

Sample Variance (Biased)
$$s_N = \sqrt {\frac{1}{N}\sum\limits_{i = 1}^N {\left( {x_i - \bar x} \right)^2 } }$$

Unbiased Estimator of Populatoin Sample Variance
$$s_{N - 1} = \sqrt {\frac{1}{{N - 1}}\sum\limits_{i = 1}^N {\left( {x_i - \bar x} \right)^2 } }$$

Standard Error
$${\mathop{\rm var}} \left( {\bar x} \right) = \frac{{\sigma ^2 }}{n}$$

Poisson Distribution
$$P\left( x \right) = \frac{{e^{ - \lambda } \lambda ^x }}{{x!}}$$

Gamma Distribution
$$\Gamma \left( a \right) = \int\limits_0^\infty {s^{a - 1} } e^{ - s} ds$$

Pythagorean Property - Tangent and Secant
$$1 + \tan ^2 \theta = \sec ^2 \theta$$

Pythagorean Property - Cotangent and Cosecant
$$\cot ^2 \theta + 1 = \csc ^2 \theta$$

Reciprocal Property - Tangent and Cotangent
$$\cot \theta = \frac{1}{{\tan \theta }}$$

Reciprocal Property - Sine and Cosecant
$$\csc \theta = \frac{1}{{\sin \theta }}$$

Reciprocal Property - Cosine and Secant
$$\sec \theta = \frac{1}{{\cos \theta }}$$

Quotient Property - Tangent, Sine, and Cosine
$$\tan \theta = \frac{{\sin \theta }}{{\cos \theta }}$$

Quotient Property - Tangent, Secant, and Cosecant
$$\tan \theta = \frac{{\sec \theta }}{{\csc \theta }}$$

Quotient Property - Cotangent, Cosecant, and Secant
$$\cot \theta = \frac{{\csc \theta }}{{\sec \theta }}$$

Quotient Property - Cotangent, Cosine, and Sine
$$\cot \theta = \frac{{\cos \theta }}{{\sin \theta }}$$

Odd Symmetry Property - Sine
$$\sin \left( { - \theta } \right) = - \sin \left( \theta \right)$$

Odd Symmetry Property - Tangent
$$\tan \left( { - \theta } \right) = - \tan \left( \theta \right)$$

Odd Symmetry Property - Cosecant
$$\csc \left( { - \theta } \right) = - \csc \left( \theta \right)$$

Even Symmetry Property - Cosine
$$\cos \left( { - \theta } \right) = \cos \left( \theta \right)$$

Even Symmetry Property - Cotangent
$$\cot \left( { - \theta } \right) = \cot \left( \theta \right)$$

Even Symmetry Property - Secant
$$\sec \left( { - \theta } \right) = \sec \left( \theta \right)$$

Area of Arbitrary Triangle
$$A = \frac{1}{2}ab\sin C$$

Law of Sines
$$\frac{{\sin A}}{a} = \frac{{\sin B}}{b} = \frac{{\sin C}}{c}$$

Law of Cosines
$$a^2 = b^2 + c^2 - 2bc\cos A$$

Sum and Difference of Angles Identity - Tangent
$$\tan \left( {\theta _1 \pm \theta _2 } \right) = \frac{{\tan \theta _1 \pm \tan \theta _2 }}{{1 \mp \tan \theta _1 \tan \theta _2 }}$$

Cotangent Definition for a Right Triangle
$$\cot \theta = \frac{{{\rm{Adjacent Side}}}}{{{\rm{Opposite Side}}}}$$

Cosecant Definition for a Right Triangle
$$\csc \theta = \frac{{{\rm{Hypotenuse}}}}{{{\rm{Opposite Side}}}}$$

Secant Definition for a Right Triangle
$$\sec \theta = \frac{{{\rm{Hypotenuse}}}}{{{\rm{Adjacent Side}}}}$$

Distributive Property
$$a\left( {b + c} \right) = ab + ac$$

Derivative of a Constant
$$\frac{d}{{dx}}C = 0$$

Derivative of a Variable to the First Power
$$\frac{d}{{dx}}x = 1$$

Derivative of a Variable to the nth Power
$$\frac{d}{{dx}}x^n = nx^{\left( {n - 1} \right)}$$

Derivative of an Exponential
$$\frac{d}{{dx}}e^{ax} = ae^{ax}$$

Derivative of an Arbitrary Base Exponential
$$\frac{d}{{dx}}b^x = b^x \ln \left( b \right)$$

Derivative of a Natural Logarithm
$$\frac{d}{{dx}}\ln \left( x \right) = \frac{1}{x}$$

Derivative of Sine
$$\frac{d}{{dx}}\sin x = \cos x$$

Derivative of Cosine
$$\frac{d}{{dx}}\cos x = - \sin x$$

Derivative of Tangent
$$\frac{d}{{dx}}\tan x = \sec ^2 x$$

Derivative of Cotangent
$$\frac{d}{{dx}}\cot x = - \csc ^2 x$$

Derivative of Secant
$$\frac{d}{{dx}}\sec x = \sec x\tan x$$

Derivative of Cosecant
$$\frac{d}{{dx}}\csc x = - \csc x\cot x$$

Derivative of Inverse Sine (Arcsine)
$$\frac{d}{{dx}}\arcsin x = \frac{d}{{dx}}sin^{ - 1} x = \frac{1}{{\sqrt {1 - x^2 } }}$$

Derivative of Inverse Cosine (Arccosine)
$$\frac{d}{{dx}}\arccos x = \frac{d}{{dx}}\cos ^{ - 1} x = \frac{{ - 1}}{{\sqrt {1 - x^2 } }}$$

Derivative of Inverse Tangent (Arctangent)
$$\frac{d}{{dx}}\arctan x = \frac{d}{{dx}}\tan ^{ - 1} x = \frac{1}{{1 + x^2 }}$$

Derivative of Inverse Cosecant (Arccosecant)
$$\frac{d}{{dx}}arc\csc x = \frac{d}{{dx}}\csc ^{ - 1} x = \frac{{ - 1}}{{\left| x \right|\sqrt {x^2 - 1} }}$$

Derivative of Inverse Secant (Arcsecant)
$$\frac{d}{{dx}}arc\sec x = \frac{d}{{dx}}\sec ^{ - 1} x = \frac{1}{{\left| x \right|\sqrt {x^2 - 1} }}$$

Derivative of Inverse Cotangent (Arccotangent)
$$\frac{d}{{dx}}arc\cot x = \frac{d}{{dx}}\cot ^{ - 1} x = \frac{{ - 1}}{{1 + x^2 }}$$

Derivative of Hyperbolic Sine
$$\frac{d}{{dx}}\sinh x = \cosh x$$

Derivative of Hyperbolic Cosine
$$\frac{d}{{dx}}\cosh x = \sinh x$$

Derivative of Hyperbolic Tangent
$$\frac{d}{{dx}}\tanh x = 1 - \tanh ^2 x$$

Derivative of Hyperbolic Cotangent
$$\frac{d}{{dx}}\coth x = 1 - \coth ^2 x$$

Derivative of Hyperbolic Secant
$$\frac{d}{{dx}}{\mathop{\rm sech}\nolimits} x = - \tanh x{\mathop{\rm sech}\nolimits} x$$

Derivative of Hyperbolic Cosecant
$$\frac{d}{{dx}}{\mathop{\rm csch}\nolimits} x = - \coth x{\mathop{\rm csch}\nolimits} x$$

Product Rule of Differentiation
$$\frac{d}{{dx}}\left( {f\left( x \right)g\left( x \right)} \right) = f\left( x \right)\frac{d}{{dx}}g\left( x \right) + \frac{d}{{dx}}f\left( x \right)g\left( x \right)$$

Quotient Rule of Differentiation
$$\frac{d}{{dx}}\left( {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \frac{{\frac{d}{{dx}}f\left( x \right)g\left( x \right) - f\left( x \right)\frac{d}{{dx}}g\left( x \right)}}{{g^2 \left( x \right)}}$$

Chain Rule of Differentiation
$$\frac{d}{{dx}}\left[ {f\left( u \right)} \right] = \frac{d}{{du}}\left[ {f\left( u \right)} \right]\frac{{du}}{{dx}}$$

Fundamental Theorem for Derivatives
$$\frac{d}{{dx}}\int\limits_a^x {f\left( s \right)} ds = f\left( x \right)$$

Definition of a Derivative
$$\frac{d}{{dx}}f\left( x \right) = \mathop {\lim }\limits_{\Delta \to 0} \frac{{f\left( {x + \Delta } \right) - f\left( x \right)}}{\Delta }$$

Fundamental Theorem of Integrals of Derivatives
$$\int\limits_a^b {\frac{d}{{dx}}F\left( x \right)dx} = F\left( b \right) - F\left( a \right)$$

Gamma Function
$$\Gamma \left( x \right) = \int\limits_0^\infty {s^{x - 1} e^{ - s} ds}$$

Equation of a Line
$$y = mx + b$$

Equation of a Circle
$$\left( {x - x_0 } \right)^2 + \left( {y - y_0 } \right)^2 = R^2$$

Equation of a Sphere
$$\left( {x - x_0 } \right)^2 + \left( {y - y_0 } \right)^2 + \left( {z - z_0 } \right)^2 = R^2$$

Equation of an Ellipsoid
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} + \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }} = 1$$

Equation of an Ellipse
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = 1$$

Superposition (Addition and Subtraction) of Sine of Angles
$$\sin \theta _1 \pm \sin \theta _2 = 2\sin \left( {\frac{{\theta _1 \pm \theta _2 }}{2}} \right)\cos \left( {\frac{{\theta _1 \mp \theta _2 }}{2}} \right)$$

Superposition (Addition) of Cosine of Angles
$$\cos \theta _1 + \cos \theta _2 = 2\cos \left( {\frac{{\theta _1 + \theta _2 }}{2}} \right)\cos \left( {\frac{{\theta _1 - \theta _2 }}{2}} \right)$$

Superposition (Subtraction) of Cosine of Angles
$$\cos \theta _1 - \cos \theta _2 = - 2\sin \left( {\frac{{\theta _1 + \theta _2 }}{2}} \right)\sin \left( {\frac{{\theta _1 - \theta _2 }}{2}} \right)$$

Euler's Formula
$$e^{ \pm i\theta } = \cos \theta \pm i\sin \theta$$

Cosine Definition as an Infinite Series
$$\cos x = \sum\limits_{n = 0}^\infty {\frac{{\left( { - 1} \right)^n x^{2n} }}{{\left( {2n} \right)!}}}$$

Sine Definition as an Infinite Series
$$\sin x = \sum\limits_{n = 1}^\infty {\frac{{\left( { - 1} \right)^{n - 1} x^{2n - 1} }}{{\left( {2n - 1} \right)!}}}$$

Distance Between Two Points (2-D)
$$d = \sqrt {\left( {x_1 - x_2 } \right)^2 + \left( {y_1 - y_2 } \right)^2 }$$

Distance Between Two Points (3-D)
$$d = \sqrt {\left( {x_1 - x_2 } \right)^2 + \left( {y_1 - y_2 } \right)^2 + \left( {z_1 - z_2 } \right)^2 }$$

Cartesian to Polar Coordinates (2-D)
$$\begin{array}{*{20}c} {x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } \\ {y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} \\ \end{array}$$

Eccentricity of an Ellipse
$$\varepsilon = \frac{{\sqrt {a^2 - b^2 } }}{a}$$

Eccentricity of a Hyperbola
$$\varepsilon = \frac{{\sqrt {a^2 + b^2 } }}{a}$$

Equation of a Hyperbola
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} - \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = 1$$

Equation of a Plane
$$Ax + By + Cz + D = 0$$

Equation of a Hyperboloid of One Sheet
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} - \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }} = 1$$

Equation of an Elliptic Cone
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }}$$

Equation of an Elliptic Cylinder
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = 1$$

Equation of a Hyperboloid of Two Sheets
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} - \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} - \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }} = 1$$

Equation of an Elliptic Paraboloid
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c}$$

Equation of a Hyperbolic Paraboloid
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} - \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c}$$

Equation of a Parabola
$$\left( {y - y_0 } \right)^2 = 4a\left( {x - x_0 } \right)$$

Cartesian to Spherical Coordinates (3-D)
$$\begin{array}{*{20}c} {x = R\sin \theta \cos \phi } & {R = \sqrt {x^2 + y^2 + z^2 } } & {} \\ {y = R\sin \theta \sin \phi } & {\phi = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = R\cos \theta } & {\theta = \cos ^{ - 1} \left( {\frac{z}{{\sqrt {x^2 + y^2 + z^2 } }}} \right)} & {} \\ \end{array}$$

Cartesian to Cylindrical Coordinates (3-D)
$$\begin{array}{*{20}c} {x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } & {} \\ {y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = z} & {z = z} & {} \\ \end{array}$$

Cylindrical to Spherical Coordinates (3-D)
$$\begin{array}{*{20}c} {r = R\sin \theta } & {R = \sqrt {r^2 + z^2 } } & {} \\ {z = R\sin \theta } & {\phi = \theta } & {} \\ {\theta = \phi } & {\theta = \tan ^{ - 1} \left( {\frac{r}{z}} \right)} & {} \\ \end{array}$$

Arithmetic Series - Sequential Integers
$$\sum\limits_{k = 1}^n {k = \frac{{n\left( {n + 1} \right)}}{2}}$$

Arithmetic Series - Sequential Odd Integers
$$\sum\limits_{k = 1}^n {2k - 1 = n^2 }$$

Arithmetic Series - Sequential Squared Integers
$$\sum\limits_{k = 1}^n {k^2 = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}}$$

Finite Geometric Series
$$\sum\limits_{k = 1}^n {ar^{k - 1} = \frac{{a\left( {1 - r^n } \right)}}{{1 - r}}}$$

Infinite Geometric Series
$$\sum\limits_{k = 1}^\infty {ar^{k - 1} = \frac{a}{{1 - r}}}$$

Perimeter of a Circle
$$P = 2\pi r$$

Perimeter of a Rectangle
$$P = 2l + 2w$$

Perimeter of a Square
$$P = 4s$$

Perimeter of a Triangle
$$P = a + b + c$$

Perimeter of a Regular Polygon
$$P = ns$$

Spiral of Archimedes (Archimedean Spiral) in Polar Coordinates
$$r = a\theta$$

Arclength
$$s = r\theta$$

L'Hopital's Rule
$$\mathop {\lim }\limits_{x \to c} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to c} \frac{{f'\left( x \right)}}{{g'\left( x \right)}}$$

Limit of One over X to the nth Power
$$\mathop {\lim }\limits_{x \to \infty } \frac{1}{{x^n }} = 0$$

Limit of Arctangent X as X Approaches Infinity
$$\mathop {\lim }\limits_{x \to \infty } \tan ^{ - 1} \left( x \right) = \frac{\pi }{2}$$

Limit of Arctangent X as X Approaches Negative Infinity
$$\mathop {\lim }\limits_{x \to - \infty } \tan ^{ - 1} \left( x \right) = - \frac{\pi }{2}$$

Limit of e to the X power as X Approaches Negative Infinity
$$\mathop {\lim }\limits_{x \to - \infty } e^x = 0$$

Entropy Change
$$\Delta S^\circ = \sum {S^\circ {\rm{products}}} - \sum {S^\circ {\rm{reactants}}}$$

Enthalpy Change
$$\Delta H^\circ = \sum {H^\circ _f {\rm{products}}} - \sum {H^\circ _f {\rm{reactants}}}$$

Gibb's Free Energy Change Defined
$$\Delta G^\circ = \sum {G^\circ _f {\rm{products}}} - \sum {G^\circ _f {\rm{reactants}}}$$

Gibb's Free Energy Change in Terms of Enthalpy, Absolute Temperature, and Entropy
$$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$$

Gibb's Free Energy Change in Terms of Gas Constant, Absolute Temperature, and Equilibrium Constant
$$\Delta G^\circ = - RT\ln K = - 2.303RT\log K$$

Gibb's Free Energy Change in Terms of Number of Moles, Faraday, and Standard Reduction Potential
$$\Delta G^\circ = - n\Im E^\circ$$

Reaction Quotient
$$\begin{array}{*{20}c} {Q = \frac{{\left[ C \right]^c \left[ D \right]^d }}{{\left[ A \right]^a \left[ B \right]^b }}} \\ {\begin{array}{*{20}c} {where} & {aA + bB \to cC + dD} \\ \end{array}} \\ \end{array}$$

Electric Current
$$I = \frac{q}{t}$$

Cell Voltage
$$E_{cell} = E^\circ _{cell} - \frac{{RT}}{{n\Im }}\ln Q = E^\circ _{cell} - \frac{{0.0592}}{n}\log Q$$

Relationship between Equilibrium Constant and Cell Voltage
$$\log K = \frac{{nE^\circ }}{{0.0592}}$$

Molar Heat Capacity at Constant Pressure
$$C_p = \frac{{\Delta H}}{{\Delta T}}$$

Partial Pressure of a Gas
$$\begin{array}{*{20}c} {P_A = P_{total} X_A } \\ {\begin{array}{*{20}c} {where} & {X_A = \frac{{\begin{array}{*{20}c} {moles} & A \\ \end{array}}}{{\begin{array}{*{20}c} {total} & {moles} \\ \end{array}}}} \\ \end{array}} \\ \end{array}$$

Total Gas Pressure as Sum of Partial Pressures
$$P_{total} = P_A + P_B + P_C + \ldots$$

Number of Moles
$$n = \frac{m}{M}$$

Temperature in Kelvin from Degrees Celsius Conversion
$$K = ^\circ C + 273$$

Combined Gas Law
$$\frac{{P_1 V_1 }}{{n_1 T_1 }} = \frac{{P_2 V_2 }}{{n_2 T_2 }}$$

Density of a Material
$$D = \frac{m}{V}$$

Root Mean Square Velocity of Gas Molecules
$$u_{rms} = \sqrt {\frac{{3kT}}{m}} = \sqrt {\frac{{3RT}}{M}}$$

Kinetic Energy per molecule
$$\frac{{KE}}{{molecule}} = \frac{1}{2}m\upsilon ^2$$

Kinetic Energy per Mole
$$\frac{{KE}}{{mole}} = \frac{3}{2}RTn$$

Kinetic Energy per Mole
$$\frac{{KE}}{{mole}} = \frac{3}{2}RTn$$

Graham's Law of Effusion
$$\frac{{r_1 }}{{r_2 }} = \sqrt {\frac{{M_2 }}{{M_1 }}}$$

Molarity Defined
$$\begin{array}{*{20}c} {molarity,} & {M = \frac{{\begin{array}{*{20}c} {moles} & {solute} \\ \end{array}}}{{\begin{array}{*{20}c} {liter} & {solution} \\ \end{array}}}} \\ \end{array}$$

Molality Defined
$$\begin{array}{*{20}c} {molality,} & { = \frac{{\begin{array}{*{20}c} {moles} & {solute} \\ \end{array}}}{{\begin{array}{*{20}c} {kilogram} & {solvent} \\ \end{array}}}} \\ \end{array}$$

Freezing Point Depression
$$\Delta T_f = iK_f \times molality$$

Boiling Point Elevation
$$\Delta T_b = iK_b \times molality$$

Osmotic Pressure
$$\pi = \frac{{nRT}}{V}i$$

Specific Heat Capacity to Heat Equation
$$q = mc\Delta T$$

Acid Ionization Constant
$$K_a = \frac{{\left[ {H^ + } \right]\left[ {A^ - } \right]}}{{\left[ {HA} \right]}}$$

Base Ionization Constant
$$K_b = \frac{{\left[ {OH^ - } \right]\left[ {HB^ + } \right]}}{{\left[ B \right]}}$$

Ion Product Constant for Water
$$\begin{array}{*{20}c} {K_w = \left[ {OH^ - } \right]\left[ {H^ + } \right] = K_a \times K_b } \\ {\begin{array}{*{20}c} { = 1.0 \times 10^{ - 14} } & {at} & {25^\circ C} \\ \end{array}} \\ \end{array}$$

pH Defined
$$pH = - \log \left[ {H^ + } \right]$$

pOH Defined
$$pOH = - \log \left[ {OH^ - } \right]$$

pH and pOH Relationship
$$14 = pH + pOH$$

Buffer Design Equation
$$pH \approx pK_a - \log \frac{{\left[ {HA} \right]_0 }}{{\left[ {A^ - } \right]_0 }}$$

pOH and Base Ionization Equilibrium Constant Relationship
$$pOH = pK_b + \log \frac{{\left[ {HB^ + } \right]}}{{\left[ B \right]}}$$

pKa Definition
$$pK_a = - \log K_a$$

pKb Definition
$$pK_b = - \log K_b$$

Gas Pressure and Concentration Relationship
$$K_p = K_c \left( {RT} \right)^{\Delta n}$$

Planck's Quantized (Quantum) Energy Equation
$$\Delta E = h\nu$$

Speed of Light to Wavelength and Frequency Relationship
$$c = \lambda \nu$$

De Broglie Wavelength
$$\lambda = \frac{h}{{m\upsilon }}$$

Linear Momentum
$$p = m\upsilon$$

Relationship between Energy and Principal Quantum Number
$$E_n = - R_H \left( {\frac{1}{{n^2 }}} \right) = \frac{{ - 2.178 \times 10^{ - 18} }}{{n^2 }}joule$$

Rydberg Equation
$$\Delta E = R_H \left( {\frac{1}{{n_i ^2 }} - \frac{1}{{n_f ^2 }}} \right)$$

van't Hoff equation
$$\ln \left( {\frac{{K_2 }}{{K_1 }}} \right) = - \frac{{\Delta H^\circ }}{R}\left[ {\frac{1}{{T_2 }} - \frac{1}{{T_1 }}} \right]$$

In [ ]:
 

Machine Learning

  1. Deal Banking Marketing Campaign Dataset With Machine Learning

TensorFlow

  1. Difference Between Scalar, Vector, Matrix and Tensor
  2. TensorFlow Deep Learning Model With IRIS Dataset
  3. Sequence to Sequence Learning With Neural Networks To Perform Number Addition
  4. Image Classification Model MobileNet V2 from TensorFlow Hub
  5. Step by Step Intent Recognition With BERT
  6. Sentiment Analysis for Hotel Reviews With NLTK and Keras
  7. Simple Sequence Prediction With LSTM
  8. Image Classification With ResNet50 Model
  9. Predict Amazon Inc Stock Price with Machine Learning
  10. Predict Diabetes With Machine Learning Algorithms
  11. TensorFlow Build Custom Convolutional Neural Network With MNIST Dataset
  12. Deal Banking Marketing Campaign Dataset With Machine Learning

PySpark

  1. How to Parallelize and Distribute Collection in PySpark
  2. Role of StringIndexer and Pipelines in PySpark ML Feature - Part 1
  3. Role of OneHotEncoder and Pipelines in PySpark ML Feature - Part 2
  4. Feature Transformer VectorAssembler in PySpark ML Feature - Part 3
  5. Logistic Regression in PySpark (ML Feature) with Breast Cancer Data Set

PyTorch

  1. Build the Neural Network with PyTorch
  2. Image Classification with PyTorch
  3. Twitter Sentiment Classification In PyTorch
  4. Training an Image Classifier in Pytorch

Natural Language Processing

  1. Spelling Correction Of The Text Data In Natural Language Processing
  2. Handling Text For Machine Learning
  3. Extracting Text From PDF File in Python Using PyPDF2
  4. How to Collect Data Using Twitter API V2 For Natural Language Processing
  5. Converting Text to Features in Natural Language Processing
  6. Extract A Noun Phrase For A Sentence In Natural Language Processing