In [1]:
import pandas as pd
from IPython.display import HTML
In [2]:
df = pd.read_csv('equations.csv')
In [3]:
df.head()
Out[3]:
equations | field_of_study | topic | title | latex_formula | |
---|---|---|---|---|---|
0 | Equations | Trigonometry | Trigonometric Properties | Pythagorean Property - Sine and Cosine | \sin ^2 \theta + \cos ^2 \theta = 1 |
1 | Equations | Trigonometry | Trigonometric Definitions | Sine Definition for a Right Triangle | \sin \theta = \frac{{{\rm{Opposite Side}}}}{{... |
2 | Equations | Trigonometry | Trigonometric Definitions | Cosine Definition for a Right Triangle | \cos \theta = \frac{{{\rm{Adjacent Side}}}}{{... |
3 | Equations | Trigonometry | Trigonometric Definitions | Tangent Definition for a Right Triangle | \tan \theta = \frac{{{\rm{Opposite Side}}}}{{... |
4 | Equations | Trigonometry | Trigonometric Identities | Double Angle Identity - Sine | \sin 2\theta = 2\sin \theta \cos \theta |
In [4]:
s = df['latex_formula'][0]
In [5]:
HTML(f'$${s}$$')
Out[5]:
$$\sin ^2 \theta + \cos ^2 \theta = 1$$
In [6]:
for s in df:
display(HTML(f'$${s}$$'))
$$equations$$
$$field_of_study$$
$$topic$$
$$title$$
$$latex_formula$$
In [7]:
next(df.iterrows())
Out[7]:
(0, equations Equations field_of_study Trigonometry topic Trigonometric Properties title Pythagorean Property - Sine and Cosine latex_formula \sin ^2 \theta + \cos ^2 \theta = 1 Name: 0, dtype: object)
In [ ]:
In [8]:
for index, row in df.iterrows():
title = row['title']
latex_formula = row['latex_formula']
print(title)
display(HTML(f'$${latex_formula}$$'))
print('\n')
Pythagorean Property - Sine and Cosine
$$\sin ^2 \theta + \cos ^2 \theta = 1$$
Sine Definition for a Right Triangle
$$\sin \theta = \frac{{{\rm{Opposite Side}}}}{{{\rm{Hypotenuse}}}}$$
Cosine Definition for a Right Triangle
$$\cos \theta = \frac{{{\rm{Adjacent Side}}}}{{{\rm{Hypotenuse}}}}$$
Tangent Definition for a Right Triangle
$$\tan \theta = \frac{{{\rm{Opposite Side}}}}{{{\rm{AdjacentSide}}}}$$
Double Angle Identity - Sine
$$\sin 2\theta = 2\sin \theta \cos \theta$$
Double Angle Identity - Cosine
$$\cos 2\theta = \cos ^2 \theta - \sin ^2 \theta = 2\cos ^2 \theta - 1$$
Half Angle Identity - Sine
$$\sin \frac{\theta }{2} = \sqrt {\frac{{1 - \cos \theta }}{2}}$$
Half Angle Identity - Cosine
$$\cos \frac{\theta }{2} = \sqrt {\frac{{1 + \cos \theta }}{2}}$$
Sum and Difference of Angles Identity - Sine
$$\sin \left( {\theta _1 \pm \theta _2 } \right) = \sin \theta _1 \cos \theta _2 \pm \cos \theta _1 \sin \theta _2$$
Sum and Difference of Angles Identity - Cosine
$$\cos \left( {\theta _1 \pm \theta _2 } \right) = \cos \theta _1 \cos \theta _2 \mp \sin \theta _1 \sin \theta _2$$
Additive Identity Property
$${\rm{a + 0 = a}}
$$
Additive Inverse Property
$$a + \left( { - a} \right) = 0
$$
Associative Property of Addition
$$\left( {a + b} \right) + c = a + \left( {b + c} \right)
$$
Commutative Property of Addition
$$a + b = b + a
$$
Definition of Subtraction
$$a - b = a + \left( { - b} \right)
$$
Multiplicative Identity
$$a \times 1 = a
$$
Multiplicative Inverse
$$a \times \frac{1}{a} = 1
$$
Zero Multiplication Property
$$a \times 0 = 0
$$
Associative Property of Multiplication
$$\left( {a \times b} \right) \times c = a \times \left( {b \times c} \right) = a \times b \times c
$$
Definition of Division
$$\frac{a}{b} = a \times \left( {\frac{1}{b}} \right)
$$
Square of a First Order Polynomial
$$\left( {a + b} \right)^2 = a^2 + 2ab + b^2
$$
Polynomial FOIL operation
$$\left( {a + b} \right)\left( {c + d} \right) = ac + ad + bc + bd
$$
Difference of Squares Factorization
$$a^2 - b^2 = \left( {a + b} \right)\left( {a - b} \right)
$$
Sum of Cubes Factorization
$$a^3 + b^3 = \left( {a + b} \right)\left( {a^2 - ab + b^2 } \right)
$$
Difference of Cubes Factorization
$$a^3 - b^3 = \left( {a - b} \right)\left( {a^2 + ab + b^2 } \right)
$$
Second Order Polynomial Factorization
$$x^2 + x\left( {a + b} \right) + ab = \left( {x + a} \right)\left( {x + b} \right)
$$
Quadratic Formula
$$\begin{array}{*{20}c}
{x = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}} & {{\rm{when}}} & {ax^2 + bx + c = 0} \\
\end{array}$$
Exponent Equal to Zero Rule
$$x^0 = 1
$$
Exponent Equal to One Rule
$$x^1 = x
$$
Addition of Exponents Rule
$$x^a x^b = x^{\left( {a + b} \right)}
$$
Distributive Property of Exponents
$$x^a y^a = \left( {xy} \right)^a
$$
Power Rule of Exponents
$$\left( {x^a } \right)^b = x^{\left( {ab} \right)}
$$
Fractional Exponent to Fractional Root Relationship
$$x^{\left( {\frac{a}{b}} \right)} = \sqrt[b]{{x^a }}
$$
Definition of Square Root
$$x^{\left( {\frac{1}{2}} \right)} = \sqrt x
$$
Negative Exponent Definition
$$x^{ - a} = \frac{1}{{x^a }}
$$
Subtraction of Exponents Rule
$$x^{\left( {a - b} \right)} = \frac{{x^a }}{{x^b }}
$$
Definition of a Logarithm
$$y = \log _b \left( x \right){\rm{ iff }}x = b^y
$$
Logarithm of One
$$\log _b \left( 1 \right) = 0
$$
Logarithmic Identity Property
$$\log _b \left( b \right) = 1
$$
Sum of Logarithms Property
$$\log _b \left( {xy} \right) = \log _b \left( x \right) + \log _b \left( y \right)
$$
Difference of Logarithms Property
$$\log _b \left( {\frac{x}{y}} \right) = \log _b \left( x \right) - \log _b \left( y \right)
$$
Logarithm of an Exponential
$$\log _b \left( {x^n } \right) = n\log _b \left( x \right)
$$
Logarithm Base Conversion
$$\log _b \left( x \right) = \log _b \left( c \right)\log _c \left( x \right) = \frac{{\log _c \left( x \right)}}{{\log _c \left( b \right)}}
$$
SURD Multiplication
$$a\sqrt b \times c\sqrt d = ac\sqrt {bd}
$$
SURD Division
$$\frac{{a\sqrt b }}{{c\sqrt d }} = \frac{a}{c}\sqrt {\frac{b}{d}}
$$
SURD Addition and Subtraction
$$a\sqrt b \pm c\sqrt b = \left( {a \pm c} \right)\sqrt b
$$
Integral of powers not equal to -1
$$\int {x^n } dx = \frac{{x^{n + 1} }}{{n + 1}},(n \ne - 1)$$
Integration by parts
$$\int {u\frac{{dv}}{{dx}}} dx = uv - \int {\frac{{du}}{{dx}}} vdx$$
Integral of reciprocal
$$\int {\frac{1}{x}} dx = \ln \left| x \right| + c$$
Integral of cosine
$$\int {\cos (ax)} dx = \frac{1}{a}\sin (ax) + c$$
Integral of sine
$$\int {\sin (ax)} dx = - \frac{1}{a}\cos (ax) + c$$
Integral of tangent
$$\int {\tan (ax)} dx = - \frac{1}{a}\ln \left| {\cos (ax)} \right| + c$$
Integral of cosecant
$$\int {\csc (ax)} dx = \frac{1}{a}\ln \left| {\tan \left( {\frac{{ax}}{2}} \right)} \right| + c$$
Integral of secant
$$\int {\sec (ax)} dx = \frac{1}{a}\ln \left| {\tan \left( {\frac{{ax}}{2} + \frac{\pi }{4}} \right)} \right| + c$$
Limit of Sine X over X as X Approaches Zero
$$\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1$$
Limit of Tangent X over X as X Approaches Zero
$$\mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{x} = 1$$
Area of a circle
$$A = \pi r^2$$
Area of an ellipse
$$A = \pi r_1 r_2$$
Area of an equilateral triangle
$$A = \frac{{h^2 \sqrt 3 }}{3}$$
Area of a parallelogram
$$A = bh$$
Area of a rectangle
$$A = lw$$
Area of a regular polygon
$$A = \frac{{nsr}}{2} = \frac{{pr}}{2}$$
Area of a rhombus
$$A = \frac{{x_1 x_2 }}{2}$$
Area of a sector
$$A = \frac{{\theta r^2 }}{2}$$
Area of a square
$$A = x^2$$
Area of a trapezoid
$$A = \frac{1}{2}(x_1 + x_2 )h$$
Area of a triangle
$$A = \frac{1}{2}bh$$
Volume of a cone
$$V = \frac{{Bh}}{3} = \frac{{\pi r^2 h}}{3}$$
Volume of a sphere
$$V = \frac{{4\pi r^3 }}{3}$$
Volume of a pyramid
$$V = \frac{{Bh}}{3}$$
Volume of a cube
$$V = x^3$$
Volume of a cuboid
$$V = lhw$$
Volume of a cylinder
$$V = Bh = \pi r^2 h$$
Volume of a prism
$$V = Bh$$
Ideal gas equation
$$PV = nRT$$
kinetic energy
$$E_k = \frac{1}{2}mv^2$$
equation of linear motion
$$x\left( t \right) = x_o + vt + \frac{1}{2}at^2$$
Surface area of a sphere
$$S = 4\pi r^2$$
Surface area of a cylinder
$$S = 2\pi r^2 + 2\pi rh$$
Surface area of a cuboid
$$S = 2lw + 2lh + 2wh$$
Surface area of a cube
$$S = 6x^2$$
Refractive index
$$n = \frac{{\sin {\rm{ }}i}}{{\sin {\rm{ }}r}} = \frac{{{\rm{depth}}}}{{{\rm{apparent depth}}}}$$
Einstein's relativistic mass-energy relation
$$E = mc^2$$
spring constant
$$k = \frac{F}{x}$$
simple harmonic motion acceleration
$$a = - \omega ^2 x = - \omega ^2 r\sin (\omega t)$$
Adibiatic change
$$PV = k$$
Ampere's law
$$\oint_C {Bd\ell = \mu _0 I_C }$$
Angular Momentum
$$M = I\omega$$
Beat frequency
$$f = f_1 - f_2$$
Charles' Law
$$\frac{V}{t} = k$$
de Broglie wavelength
$$\lambda = \frac{h}{{mv}}$$
Voltage equation
$$V = IR$$
Zurich sunspot number
$$R = k(f + 10g)$$
Yukawa Potential
$$V = \frac{{V_\theta e^{ - kr} }}{r}$$
Young's modulus
$$\Upsilon = \frac{{{F \mathord{\left/
{\vphantom {F A}} \right.
\kern-\nulldelimiterspace} A}}}{{{{\Delta L} \mathord{\left/
{\vphantom {{\Delta L} L}} \right.
\kern-\nulldelimiterspace} L}}} = \frac{{{\rm{Stress}}}}{{{\rm{Strain}}}}$$
Newton's Second Law (Force)
$$F = ma$$
Z-transform time domain convolution (z domain multiplication) property
$$h(n) * x(n) \Leftrightarrow H(z)X(z)$$
Z-transform linearity property
$$a_1 x_1 (n) + a_2 x_2 (n) \Leftrightarrow a_1 X_1 (z) + a_2 X_2 (z)$$
Z-transform translation (time shift) property
$$x(n - m) \Leftrightarrow z^{ - m} X(z)$$
Z-transform multiplication by an exponential (z domain scaling) property
$$a^n x\left( n \right) \Leftrightarrow X\left( {\frac{z}{a}} \right)$$
Z-transform multiplication by a ramp (z domain differentiation) property
$$nx\left( n \right) \Leftrightarrow - z\frac{{dX(z)}}{{dz}}$$
Z-transform time domain multiplication (z domain convolution) property
$$h(n)x(n) \Leftrightarrow \frac{1}{{2\pi j}}\oint_C {H\left( v \right)X\left( {z/v} \right)\mathop v\nolimits^{ - 1} dv}$$
Z-transform initial value theorem
$$x\left( {0^ - } \right) = \mathop {\lim }\limits_{z \to \infty } X\left( z \right)$$
Z-transform final value theorem. Valid only if polues of (z-1)X(z) are inside the unit circle.
$$x\left( \infty \right) = \mathop {\lim }\limits_{z \to 1} \left( {z - 1} \right)X\left( z \right)$$
Z-transform of delta
$$\delta (n) \Leftrightarrow 1$$
Z-transform of shifted delta
$$\delta (n - m) \Leftrightarrow z^{ - m} ,\left| z \right| > 1$$
Z-transform of unit step function
$$u(n) \Leftrightarrow \frac{z}{{z - 1}},\left| z \right| > 1$$
Z-transform involving the unit step function
$$nu(n) \Leftrightarrow \frac{z}{{\left( {z - 1} \right)^2 }},\left| z \right| > 1$$
Z-transform involving the unit step function
$$n^2 u(n) \Leftrightarrow \frac{{z\left( {z + 1} \right)}}{{\left( {z - 1} \right)^3 }},\left| z \right| > 1$$
Z-transform involving the unit step function
$$n^3 u(n) \Leftrightarrow \frac{{z\left( {z^2 + 4z + 1} \right)}}{{\left( {z - 1} \right)^4 }},\left| z \right| > 1$$
Z-transform involving the unit step function and an exponential
$$a^n u(n) \Leftrightarrow \frac{z}{{\left( {z - a} \right)}},\left| z \right| > \left| a \right|$$
Z-transform involving the unit step function and an exponential
$$na^n u(n) \Leftrightarrow \frac{{az}}{{\left( {z - a} \right)^2 }},\left| z \right| > \left| a \right|$$
Z-transform involving the unit step function and an exponential
$$n^2 a^n u(n) \Leftrightarrow \frac{{az(z + a)}}{{\left( {z - a} \right)^3 }},\left| z \right| > \left| a \right|$$
Z-transform involving the unit step function and an exponential
$$n^3 a^n u(n) \Leftrightarrow \frac{{az(z^2 + 4az + a^2 )}}{{\left( {z - a} \right)^4 }},\left| z \right| > \left| a \right|$$
Z-transform involving the unit step function and an exponential
$$na^{n - 1} u(n) \Leftrightarrow \frac{z}{{\left( {z - a} \right)^2 }},\left| z \right| > \left| a \right|$$
Z-transform involving the unit step function and an exponential
$$\frac{1}{2}n(n - 1)a^{n - 2} u(n) \Leftrightarrow \frac{z}{{\left( {z - a} \right)^3 }},\left| z \right| > \left| a \right|$$
Z-transform involving the unit step function and an exponential
$$\frac{1}{6}n(n - 1)(n - 2)a^{n - 3} u(n) \Leftrightarrow \frac{z}{{\left( {z - a} \right)^4 }},\left| z \right| > \left| a \right|$$
Z-transform involving the unit step function and an exponential
$$e^n u(n) \Leftrightarrow \frac{z}{{\left( {z - e} \right)}},\left| z \right| > \left| e \right|$$
Z-transform involving the unit step function and sine
$$\sin (\omega _o n)u(n) \Leftrightarrow \frac{{z\sin \omega _o }}{{\left( {z^2 - 2z\cos \omega _o + 1} \right)}},\left| z \right| > 1$$
Z-transform involving the unit step function and cosine
$$\cos (\omega _o n)u(n) \Leftrightarrow \frac{{z(z - \cos \omega _o )}}{{\left( {z^2 - 2z\cos \omega _o + 1} \right)}},\left| z \right| > 1$$
Z-transform involving the unit step function and cosine
$$\cos (\omega _o n + \theta )u(n) \Leftrightarrow \frac{{z[z\cos \theta - \cos (\omega _o - \theta )]}}{{\left( {z^2 - 2z\cos \omega _o + 1} \right)}},\left| z \right| > 1$$
Z-transform involving the unit step function and sine
$$\sin (\omega _o n + \theta )u(n) \Leftrightarrow \frac{{z[z\sin \theta + \sin (\omega _o - \theta )]}}{{\left( {z^2 - 2z\cos \omega _o + 1} \right)}},\left| z \right| > 1$$
Z-transform involving the unit step function and hyperbolic sine
$$\sinh (\omega _o n)u(n) \Leftrightarrow \frac{{z\sinh \omega _o }}{{\left( {z^2 - 2z\cosh \omega _o + 1} \right)}},\left| z \right| > e^{\omega _o }$$
Z-transform involving the unit step function and hyperbolic cosine
$$\cosh (\omega _o n)u(n) \Leftrightarrow \frac{{z(z - \cosh \omega _o )}}{{\left( {z^2 - 2z\cosh \omega _o + 1} \right)}},\left| z \right| > e^{\omega _o }$$
Laplace transform of Kroeneker delta function
$$\delta (t) \Leftrightarrow 1$$
Laplace transform of unit step function times a constant (K)
$$Ku(t) \Leftrightarrow \frac{K}{s}$$
Laplace transform involving the unit step function
$$tu(t) \Leftrightarrow \frac{1}{{s^2 }}$$
Laplace transform involving the unit step function
$$t^n u(t) \Leftrightarrow \frac{{n!}}{{s^{n + 1} }}$$
Laplace transform involving the unit step function and an exponential
$$Ke^{ - at} u(t) \Leftrightarrow \frac{K}{{s + a}}$$
Laplace transform involving the unit step function and an exponential
$$t^n e^{ - at} u(t) \Leftrightarrow \frac{{n!}}{{(s + a)^{n + 1} }}$$
Laplace transform involving the unit step function and sine
$$\sin (\Omega t)u(t) \Leftrightarrow \frac{\Omega }{{(s^2 + \Omega ^2 )}}$$
Laplace transform involving the unit step function and cosine
$$\cos (\Omega t)u(t) \Leftrightarrow \frac{s}{{(s^2 + \Omega ^2 )}}$$
Laplace transform involving the unit step function, cosine, and an exponential
$$e^{ - at} \cos (\Omega t)u(t) \Leftrightarrow \frac{{s + a}}{{(s + a)^2 + \Omega ^2 }}$$
Laplace transform involving the unit step function, sine, and an exponential
$$e^{ - at} \sin (\Omega t)u(t) \Leftrightarrow \frac{\Omega }{{(s + a)^2 + \Omega ^2 }}$$
Laplace transform linearity property
$$a_1 x_1 (t) + a_2 x_2 (t) \Leftrightarrow a_1 X_1 (s) + a_2 X_2 (s)$$
Laplace transform Nth time domain derivative property
$$\frac{{d^n x(t)}}{{dt^n }} \Leftrightarrow s^n X(s)$$
Laplace transform integral property
$$\int\limits_0^t {x(\tau )d} \tau \Leftrightarrow \frac{1}{s}X(s)$$
Laplace transform time domain shifting property
$$x(t - a)u(t - a) \Leftrightarrow e^{ - as} X(s + a)$$
Laplace transform time domain scaling property
$$x(at)u(t) \Leftrightarrow \frac{1}{a}X\left( {\frac{s}{a}} \right)$$
Laplace transform time varying coefficient (s domain differentiation) property
$$tx(t)u(t) \Leftrightarrow \frac{{ - dX(s)}}{{ds}}$$
Laplace transform time domain linear convolution (s domain multiplication) property
$$\int\limits_0^\infty {x_1 (\tau )x_2 (t - \tau )d\tau } \Leftrightarrow X_1 (s)X_2 (s)$$
Laplace transform final value theorem (valid if poles of sX(s) are in left half of s plane).
$$x(\infty ) = \mathop {\lim }\limits_{s \to 0} sX(s)$$
Laplace transform initial value theorem
$$x(0^ + ) = \mathop {\lim }\limits_{s \to \infty } sX(s)$$
Laplace transform definition
$$X(s) = \int\limits_0^\infty {x(t)e^{ - st} dt}$$
Z transform definition
$$X(z) \buildrel \Delta \over = \sum\limits_{n = - \infty }^\infty {x(n)z^{ - n} }$$
Discrete-Time Fourier linearity theorem
$$ax(n) + by(n) \Leftrightarrow aX(e^{j\omega } ) + bY(e^{j\omega } )$$
Discrete-Time Fourier time shift property
$$x(n - n_o ) \Leftrightarrow e^{ - j\omega n_o } X(e^{j\omega } )$$
Discrete-Time Fourier frequency shift property
$$e^{ + j\omega _o n} x(n) \Leftrightarrow X(e^{j(\omega - \omega _o )} )$$
Discrete-Time Fourier time reversal property
$$x( - n) \Leftrightarrow X(e^{ - j\omega } )$$
Discrete-Time Fourier time reversal property; x(n) real
$$x( - n) \Leftrightarrow X^* (e^{j\omega } )$$
Discrete-Time Fourier frequency differentiation property
$$nx(n) \Leftrightarrow j\frac{{dX(e^{j\omega } )}}{{d\omega }}$$
Discrete-Time Fourier time/space convolution property
$$x(n) * y(n) \Leftrightarrow X(e^{j\omega } )Y(e^{j\omega } )$$
Discrete-Time Fourier windowing, modulation, frequency convolution property
$$x(n)y(n) \Leftrightarrow \frac{1}{{2\pi }}\int\limits_{ - \pi }^\pi {X(e^{j\theta } )Y(e^{j(\omega - \theta )} )d\theta }$$
Discrete-Time Fourier transform - Parseval's Theorem
$$\sum\limits_{n = - \infty }^\infty {\left| {x(n)} \right|^2 } = \frac{1}{{2\pi }}\int\limits_{ - \pi }^\pi {\left| {X(e^{j\omega } )} \right|^2 d\omega }$$
Discrete-Time Fourier transform - Parseval's Theorem
$$\sum\limits_{n = - \infty }^\infty {x(n)y^* (n)} = \frac{1}{{2\pi }}\int\limits_{ - \pi }^\pi {X(e^{j\omega } )Y^* (e^{j\omega } )d\omega }$$
Discrete-Time Fourier transform of delta
$$a\delta (n) \Leftrightarrow a$$
Discrete-Time Fourier transform of shifted delta
$$\delta (n - n_o ) \Leftrightarrow e^{ - j\omega n_o }$$
Discrete-Time Fourier transform of a constant
$$a \Leftrightarrow 2\pi a\sum\limits_{k = - \infty }^\infty {\delta (\omega + 2\pi k)} ,( - \infty < n < \infty )$$
Discrete-Time Fourier transform of unit step function
$$u(n) \Leftrightarrow \frac{1}{{(1 - e^{ - j\omega } )}} + \sum\limits_{k = - \infty }^\infty {\pi \delta (\omega + 2\pi k)}$$
Discrete-Time Fourier transform of unit step function and exponential
$$a^n u(n) \Leftrightarrow \frac{1}{{(1 - ae^{ - j\omega } )}},\left| a \right| < 1$$
Discrete-Time Fourier transform of unit step function and exponential
$$(n + 1)a^n u(n) \Leftrightarrow \frac{1}{{(1 - ae^{ - j\omega } )^2 }},\left| a \right| < 1$$
Discrete-Time Fourier transform of complex exponential
$$e^{j\omega _o n} \Leftrightarrow 2\pi \sum\limits_{k = - \infty }^\infty {\delta (\omega - \omega _o + 2\pi k)}$$
Discrete-Time Fourier transform of a sinc sequence
$$\frac{{\sin (\omega _c n)}}{n} \Leftrightarrow X(e^{j\omega } ) = \left\{ {\begin{array}{*{20}c}
{1,\left| \omega \right| \le \omega _c } \\
{0,\omega _c < \left| \omega \right| \le \omega _c } \\
\end{array}} \right.$$
Discrete-Time Fourier transform of a boxcar sequence
$$x(n) = \left\{ {\begin{array}{*{20}c}
{1,0 \le n \le N - 1} \\
{0,{\rm{otherwise}}} \\
\end{array} \Leftrightarrow } \right.\frac{{\sin (\omega N/2)}}{{\sin (\omega /2)}}e^{ - j\omega (N - 1)/2}$$
Discrete-Time Fourier transform definition
$$X(e^{j\omega } ) = x(n)e^{ - j\omega n} ,\omega {\rm{in radians}}$$
Black Hole Entropy as derived by Stephen Hawking
$$S = \frac{{Akc^3 }}{{4\hbar G}}$$
Time-independent, one-dimensional Schr
$$- \frac{{\hbar ^2 }}{{2m}}\frac{{d^2 \psi (x)}}{{dx^2 }} + U(x)\psi (x) = E\psi (x)$$
Time-dependent, one-dimensional Schr
$$- \frac{{\hbar ^2 }}{{2m}}\frac{{\partial ^2 \psi (x,t)}}{{\partial x^2 }} + U(x)\psi (x,t) = i\hbar \frac{{\partial \psi (x,t)}}{{\partial t}}$$
Ohm's Law
$$V = IR = I\left( {\frac{L}{{\sigma A}}} \right) = I\left( {\frac{{\rho L}}{A}} \right)$$
Bohr Radius
$$a_0 = \frac{{\hbar ^2 }}{{m_e ke^2 }}$$
Radii of stable orbits in the Bohr model
$$r = n^2 \frac{{\hbar ^2 }}{{m_e kZe^2 }} = n^2 \frac{{a_0 }}{Z}$$
Phase difference between the first and last waves for a single-slit diffraction pattern
$$\phi = \frac{{2\pi }}{\lambda }a\sin \theta$$
single-slit diffraction pattern points of zero intensity
$$a\sin \theta = m\lambda$$
Definition of intensity
$$I = \frac{{P_{av} }}{A}$$
Superposition of standing waves on a string with both ends fixed
$$y(x,t) = \sum\limits_n {A_n \cos (\omega _n t + \delta _n )\sin (k_n x)}$$
Standing-wave function
$$y(x,t) = A_n \cos (\omega _n t + \delta _n )\sin (k_n x)$$
Energy transmitted by a harmonic wave
$$\Delta E = \frac{1}{2}\mu \omega ^2 A^2 \Delta x = \frac{1}{2}\mu \omega ^2 A^2 \upsilon \Delta t$$
Power transmitted by a harmonic wave
$$P = \frac{{dE}}{{dt}} = \frac{1}{2}\mu \omega ^2 A^2 \upsilon$$
Harmonic wave function
$$y(x,t) = A\sin \left[ {2\pi \left( {\frac{x}{\lambda } - \frac{t}{T}} \right)} \right]$$
Harmonic wave function
$$y(x,t) = A\sin \left[ {k(x - \upsilon t)} \right]$$
Velocity at resonance frequency of a driven oscillator
$$\upsilon = + A\omega \cos \left( {\omega t} \right) = - A\omega \sin \left( {\omega t - \frac{\pi }{2}} \right)$$
Amplitude of a driven oscillation
$$A = \frac{{F_0 }}{{\sqrt {m^2 \left( {\omega _0^2 - \omega ^2 } \right)^2 + b^2 \omega ^2 } }}$$
Displacement of a driven oscillator
$$x = A\cos \left( {\omega t + \delta } \right)$$
Displacement of a slightly damped oscillator
$$x = A_0 \exp \left( { - \frac{b}{{2m}}t} \right)\cos \left( {\omega 't + \delta } \right)$$
Kinetic energy of simple harmonic motion
$$K = \frac{1}{2}kA^2 \sin ^2 \left( {\omega t + \delta } \right)$$
Potential energy of simple harmonic motion
$$U = \frac{1}{2}kA^2 \cos ^2 \left( {\omega t + \delta } \right)$$
Total energy of simple harmonic motion
$$E_{Total} = \frac{1}{2}kA^2$$
Viscous flow
$$F = \eta \frac{{\upsilon A}}{z}$$
Continuity equation
$$I_V = \upsilon A = {\rm{constant}}$$
Hydraulic lift
$$F_2 = \frac{{F_1 }}{{A_1 }}A_2 = \frac{{A_2 }}{{A_1 }}F_1$$
Shear modulus defined
$$M_S = \frac{{{{F_S } \mathord{\left/
{\vphantom {{F_S } A}} \right.
\kern-\nulldelimiterspace} A}}}{{{{\Delta x} \mathord{\left/
{\vphantom {{\Delta x} L}} \right.
\kern-\nulldelimiterspace} L}}} = \frac{{{{F_S } \mathord{\left/
{\vphantom {{F_S } A}} \right.
\kern-\nulldelimiterspace} A}}}{{{\rm{tan}}\theta }} = \frac{{{\rm{Shear Stress}}}}{{{\rm{Shear Strain}}}}$$
Shear stress
$${\rm{Shear Stress = }}\frac{{{\rm{F}}_{\rm{S}} }}{{\rm{A}}}$$
Stress
$${\rm{Stress}} = \frac{F}{A}$$
Centripetal acceleration
$$a = \frac{{\upsilon ^2 }}{r}$$
Instantaneous Acceleration
$$a = \frac{{d\upsilon }}{{dt}} = \frac{{d^2 x}}{{dt^2 }}$$
Velocity
$$\upsilon ^2 = \upsilon _0 ^2 + 2a\Delta x$$
Displacement
$$\Delta x = x - x_0 = \upsilon _0 t + \frac{1}{2}at^2$$
Velocity
$$\upsilon = \upsilon _0 + at$$
Average acceleration
$$a_{av} = \frac{{\Delta \upsilon }}{{\Delta t}}$$
Maxwell's equation - Faraday's law
$$\oint_C {E \cdot d\ell = - \frac{d}{{dt}}} \int_S {B_n dA}$$
Maxwell's equation - Gauss's law
$$\oint_S {E_n dA = \frac{1}{{\varepsilon _0 }}} Q_{inside}$$
Self inductance of a solenoid
$$L = \frac{{\phi _m }}{I} = \mu _0 n^2 A\ell$$
Magnetic flux defined
$$\phi _m = \int_S {N{\bf{B}} \cdot {\bf{\hat n}}dA = } \int_S {NB_n dA}$$
EMF (Electromotive Force) defined
$$\xi = \oint_C {E \cdot d\ell }$$
Resistance
$$R = \frac{L}{{\sigma A}} = \frac{{\rho L}}{A}$$
Electric current
$$I = \frac{{\Delta Q}}{{\Delta t}} = nqA\upsilon _d$$
Number density of charge carriers
$$n = \frac{I}{{Aq\upsilon _d }} = \frac{I}{{wte\upsilon _d }}$$
Current in a conducting strip
$$I = nAq\upsilon _d$$
Magnetic dipole moment of a current loop
$$m = NIA\hat n$$
Capacitance of a cylindrical capacitor
$$C = \frac{Q}{V} = \frac{{2\pi \varepsilon _0 L}}{{\ln \left( {{b \mathord{\left/
{\vphantom {b a}} \right.
\kern-\nulldelimiterspace} a}} \right)}}$$
Capacitance of a parallel-plate capacitor
$$C = \frac{Q}{V} = \frac{{\varepsilon _0 A}}{s}$$
Potential due to a line charge
$$V = - 2k\lambda \ln \frac{r}{a}$$
Change in potential
$$\Delta V = V_b - V_a = \frac{{\Delta U}}{{q_0 }} = - \int_a^b {E \cdot d\ell }$$
Change in electrostatic potential energy for a point charge
$$\Delta U = U_b - U_a = \int_a^b {dU} = - \int_a^b {q_0 E \cdot d\ell }$$
Gauss's law
$$\phi _{net} = \int_S {E_n dA = } \frac{1}{{\varepsilon _0 }}Q_{inside} = 4\pi kQ_{inside}$$
Electric flux defined
$$\phi = \int_S {{\bf{E}} \cdot {\bf{\hat n}}dA}$$
Electric field on the axis of a ring charge
$$E_x = \frac{{kQx}}{{\left( {x^2 + a^2 } \right)^{{3 \mathord{\left/
{\vphantom {3 2}} \right.
\kern-\nulldelimiterspace} 2}} }}$$
Acceleration of a particle in an electric field
$$a = \frac{q}{m}E$$
Net power radiated by an object
$$P_{net} = e\sigma A\left( {T^4 - T_0^4 } \right)$$
Radiation absorbed by an object
$$P_a = e\sigma AT_0^4$$
Stefan-Boltzmann law
$$P = e\sigma AT^4$$
Thermal resistance
$$R = \frac{{\Delta x}}{{kA}}$$
Thermal conduction
$$I = \frac{{\Delta Q}}{{\Delta t}} = kA\frac{{\Delta T}}{{\Delta x}}$$
Van der Waals equation
$$\left( {P + \frac{{an^2 }}{{V^2 }}} \right)\left( {V - bn} \right) = nRT$$
Speed of sound waves in a fluid
$$\upsilon = \sqrt {\frac{B}{\rho }}$$
Phase constant of a driven oscillation
$$\tan \delta = \frac{{b\omega }}{{m\left( {\omega _0^2 - \omega ^2 } \right)}}$$
Angular frequency for a damped oscillation
$$\omega ' = \omega _0 \sqrt {1 - \left( {\frac{b}{{2m\omega _0 }}} \right)^2 } = \omega _0 \sqrt {1 - \frac{1}{{4Q^2 }}}$$
Energy change in a damped oscillation
$$\frac{{\Delta E}}{E} = - \frac{b}{m}T$$
Energy change in a damped oscillation
$$E = E_0 \exp \left( { - \frac{b}{m}t} \right) = E_0 \exp \left( { - \frac{t}{\tau }} \right)$$
Compressibility
$$k = \frac{1}{B} = - \frac{{{{\Delta V} \mathord{\left/
{\vphantom {{\Delta V} V}} \right.
\kern-\nulldelimiterspace} V}}}{P}$$
Bulk modulus defined
$$B = - \frac{P}{{{{\Delta V} \mathord{\left/
{\vphantom {{\Delta V} V}} \right.
\kern-\nulldelimiterspace} V}}}$$
Poynting vector
$$S = \frac{{E \times B}}{{\mu _0 }}$$
Electric field and magnetic field relationship for an electromagnetic wave
$$E = cB$$
Wave equation for magnetic field
$$\frac{{\partial ^2 B}}{{\partial x^2 }} = \frac{1}{{c^2 }}\frac{{\partial ^2 B}}{{\partial t^2 }}$$
Magnetic field inside a solenoid
$$B = \mu _0 nI$$
Biot-Savart law
$$d{\bf{B}} = \frac{{\mu _0 }}{{4\pi }}\frac{{Id\ell \times {\bf{\hat r}}}}{{r^2 }}$$
Torque on a current loop
$$\tau = m \times B$$
Magnetic force on a moving charge
$$F = q{\bf{v}} \times {\bf{B}}$$
Rydberg constant
$$R = \frac{{m_e k^2 e^4 }}{{4\pi c\hbar ^3 }}$$
Schwarzschild Black Hole Radius
$$R = \frac{{2GM}}{{c^2 }}$$
Black Hole Temperature
$$T = \frac{{\hbar c^3 }}{{8\pi kGM}}$$
Binomial Coefficient
$$\left( {\begin{array}{*{20}c}
n \\
k \\
\end{array}} \right) = \frac{{n!}}{{k!\left( {n - k} \right)!}}$$
Binomial Equation
$$y = \frac{{n!}}{{k!\left( {n - k} \right)!}}p^k q^{n - k} = \left( {\begin{array}{*{20}c}
n \\
k \\
\end{array}} \right)p^k q^{n - k}$$
Mean of Binomial Distribution
$$M_b = np$$
Variance of Binomial Distribution
$$\sigma ^2 _b = npq$$
Standard Normal Distribution
$$y = \frac{1}{{\sqrt {2\pi } }}e^{ - \frac{{z^2 }}{2}} = .3989e^{ - 5z^2 }$$
Euler's Constant
$$e = \mathop {\lim }\limits_{n \to \infty } \left( {1 + \frac{1}{n}} \right)^n$$
Gaussian Normal Distribution
$$P(x) = \frac{1}{{\sigma \sqrt {2\pi } }}e^{{{ - \left( {x - \mu } \right)^2 } \mathord{\left/
{\vphantom {{ - \left( {x - \mu } \right)^2 } {2\sigma ^2 }}} \right.
\kern-\nulldelimiterspace} {2\sigma ^2 }}}$$
nth moment about point a
$$\mu _n \left( a \right) = \sum {\left( {x - a} \right)^n P\left( x \right)}$$
Mean about zero
$$\mu = \mu _1 = \sum {xP\left( x \right)}$$
Variance or second moment about the Mean
$$\sigma ^2 = \mu _2 = \sum {\left( {x - \mu _1 } \right)^2 P\left( x \right)}$$
Fisher Skewness
$$\gamma _1 = \frac{{\mu _3 }}{{\mu _2 ^{{3 \mathord{\left/
{\vphantom {3 2}} \right.
\kern-\nulldelimiterspace} 2}} }} = \frac{{\mu _3 }}{{\sigma ^3 }}$$
Standard Deviation
$$\sigma = \sqrt {\mu _2 }$$
Sample Variance (Biased)
$$s_N = \sqrt {\frac{1}{N}\sum\limits_{i = 1}^N {\left( {x_i - \bar x} \right)^2 } }$$
Unbiased Estimator of Populatoin Sample Variance
$$s_{N - 1} = \sqrt {\frac{1}{{N - 1}}\sum\limits_{i = 1}^N {\left( {x_i - \bar x} \right)^2 } }$$
Standard Error
$${\mathop{\rm var}} \left( {\bar x} \right) = \frac{{\sigma ^2 }}{n}$$
Poisson Distribution
$$P\left( x \right) = \frac{{e^{ - \lambda } \lambda ^x }}{{x!}}$$
Gamma Distribution
$$\Gamma \left( a \right) = \int\limits_0^\infty {s^{a - 1} } e^{ - s} ds$$
Pythagorean Property - Tangent and Secant
$$1 + \tan ^2 \theta = \sec ^2 \theta$$
Pythagorean Property - Cotangent and Cosecant
$$\cot ^2 \theta + 1 = \csc ^2 \theta$$
Reciprocal Property - Tangent and Cotangent
$$\cot \theta = \frac{1}{{\tan \theta }}$$
Reciprocal Property - Sine and Cosecant
$$\csc \theta = \frac{1}{{\sin \theta }}$$
Reciprocal Property - Cosine and Secant
$$\sec \theta = \frac{1}{{\cos \theta }}$$
Quotient Property - Tangent, Sine, and Cosine
$$\tan \theta = \frac{{\sin \theta }}{{\cos \theta }}$$
Quotient Property - Tangent, Secant, and Cosecant
$$\tan \theta = \frac{{\sec \theta }}{{\csc \theta }}$$
Quotient Property - Cotangent, Cosecant, and Secant
$$\cot \theta = \frac{{\csc \theta }}{{\sec \theta }}$$
Quotient Property - Cotangent, Cosine, and Sine
$$\cot \theta = \frac{{\cos \theta }}{{\sin \theta }}$$
Odd Symmetry Property - Sine
$$\sin \left( { - \theta } \right) = - \sin \left( \theta \right)$$
Odd Symmetry Property - Tangent
$$\tan \left( { - \theta } \right) = - \tan \left( \theta \right)$$
Odd Symmetry Property - Cosecant
$$\csc \left( { - \theta } \right) = - \csc \left( \theta \right)$$
Even Symmetry Property - Cosine
$$\cos \left( { - \theta } \right) = \cos \left( \theta \right)$$
Even Symmetry Property - Cotangent
$$\cot \left( { - \theta } \right) = \cot \left( \theta \right)$$
Even Symmetry Property - Secant
$$\sec \left( { - \theta } \right) = \sec \left( \theta \right)$$
Area of Arbitrary Triangle
$$A = \frac{1}{2}ab\sin C$$
Law of Sines
$$\frac{{\sin A}}{a} = \frac{{\sin B}}{b} = \frac{{\sin C}}{c}$$
Law of Cosines
$$a^2 = b^2 + c^2 - 2bc\cos A$$
Sum and Difference of Angles Identity - Tangent
$$\tan \left( {\theta _1 \pm \theta _2 } \right) = \frac{{\tan \theta _1 \pm \tan \theta _2 }}{{1 \mp \tan \theta _1 \tan \theta _2 }}$$
Cotangent Definition for a Right Triangle
$$\cot \theta = \frac{{{\rm{Adjacent Side}}}}{{{\rm{Opposite Side}}}}$$
Cosecant Definition for a Right Triangle
$$\csc \theta = \frac{{{\rm{Hypotenuse}}}}{{{\rm{Opposite Side}}}}$$
Secant Definition for a Right Triangle
$$\sec \theta = \frac{{{\rm{Hypotenuse}}}}{{{\rm{Adjacent Side}}}}$$
Distributive Property
$$a\left( {b + c} \right) = ab + ac$$
Derivative of a Constant
$$\frac{d}{{dx}}C = 0$$
Derivative of a Variable to the First Power
$$\frac{d}{{dx}}x = 1$$
Derivative of a Variable to the nth Power
$$\frac{d}{{dx}}x^n = nx^{\left( {n - 1} \right)}$$
Derivative of an Exponential
$$\frac{d}{{dx}}e^{ax} = ae^{ax}$$
Derivative of an Arbitrary Base Exponential
$$\frac{d}{{dx}}b^x = b^x \ln \left( b \right)$$
Derivative of a Natural Logarithm
$$\frac{d}{{dx}}\ln \left( x \right) = \frac{1}{x}$$
Derivative of Sine
$$\frac{d}{{dx}}\sin x = \cos x$$
Derivative of Cosine
$$\frac{d}{{dx}}\cos x = - \sin x$$
Derivative of Tangent
$$\frac{d}{{dx}}\tan x = \sec ^2 x$$
Derivative of Cotangent
$$\frac{d}{{dx}}\cot x = - \csc ^2 x$$
Derivative of Secant
$$\frac{d}{{dx}}\sec x = \sec x\tan x$$
Derivative of Cosecant
$$\frac{d}{{dx}}\csc x = - \csc x\cot x$$
Derivative of Inverse Sine (Arcsine)
$$\frac{d}{{dx}}\arcsin x = \frac{d}{{dx}}sin^{ - 1} x = \frac{1}{{\sqrt {1 - x^2 } }}$$
Derivative of Inverse Cosine (Arccosine)
$$\frac{d}{{dx}}\arccos x = \frac{d}{{dx}}\cos ^{ - 1} x = \frac{{ - 1}}{{\sqrt {1 - x^2 } }}$$
Derivative of Inverse Tangent (Arctangent)
$$\frac{d}{{dx}}\arctan x = \frac{d}{{dx}}\tan ^{ - 1} x = \frac{1}{{1 + x^2 }}$$
Derivative of Inverse Cosecant (Arccosecant)
$$\frac{d}{{dx}}arc\csc x = \frac{d}{{dx}}\csc ^{ - 1} x = \frac{{ - 1}}{{\left| x \right|\sqrt {x^2 - 1} }}$$
Derivative of Inverse Secant (Arcsecant)
$$\frac{d}{{dx}}arc\sec x = \frac{d}{{dx}}\sec ^{ - 1} x = \frac{1}{{\left| x \right|\sqrt {x^2 - 1} }}$$
Derivative of Inverse Cotangent (Arccotangent)
$$\frac{d}{{dx}}arc\cot x = \frac{d}{{dx}}\cot ^{ - 1} x = \frac{{ - 1}}{{1 + x^2 }}$$
Derivative of Hyperbolic Sine
$$\frac{d}{{dx}}\sinh x = \cosh x$$
Derivative of Hyperbolic Cosine
$$\frac{d}{{dx}}\cosh x = \sinh x$$
Derivative of Hyperbolic Tangent
$$\frac{d}{{dx}}\tanh x = 1 - \tanh ^2 x$$
Derivative of Hyperbolic Cotangent
$$\frac{d}{{dx}}\coth x = 1 - \coth ^2 x$$
Derivative of Hyperbolic Secant
$$\frac{d}{{dx}}{\mathop{\rm sech}\nolimits} x = - \tanh x{\mathop{\rm sech}\nolimits} x$$
Derivative of Hyperbolic Cosecant
$$\frac{d}{{dx}}{\mathop{\rm csch}\nolimits} x = - \coth x{\mathop{\rm csch}\nolimits} x$$
Product Rule of Differentiation
$$\frac{d}{{dx}}\left( {f\left( x \right)g\left( x \right)} \right) = f\left( x \right)\frac{d}{{dx}}g\left( x \right) + \frac{d}{{dx}}f\left( x \right)g\left( x \right)$$
Quotient Rule of Differentiation
$$\frac{d}{{dx}}\left( {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \frac{{\frac{d}{{dx}}f\left( x \right)g\left( x \right) - f\left( x \right)\frac{d}{{dx}}g\left( x \right)}}{{g^2 \left( x \right)}}$$
Chain Rule of Differentiation
$$\frac{d}{{dx}}\left[ {f\left( u \right)} \right] = \frac{d}{{du}}\left[ {f\left( u \right)} \right]\frac{{du}}{{dx}}$$
Fundamental Theorem for Derivatives
$$\frac{d}{{dx}}\int\limits_a^x {f\left( s \right)} ds = f\left( x \right)$$
Definition of a Derivative
$$\frac{d}{{dx}}f\left( x \right) = \mathop {\lim }\limits_{\Delta \to 0} \frac{{f\left( {x + \Delta } \right) - f\left( x \right)}}{\Delta }$$
Fundamental Theorem of Integrals of Derivatives
$$\int\limits_a^b {\frac{d}{{dx}}F\left( x \right)dx} = F\left( b \right) - F\left( a \right)$$
Gamma Function
$$\Gamma \left( x \right) = \int\limits_0^\infty {s^{x - 1} e^{ - s} ds}$$
Equation of a Line
$$y = mx + b$$
Equation of a Circle
$$\left( {x - x_0 } \right)^2 + \left( {y - y_0 } \right)^2 = R^2$$
Equation of a Sphere
$$\left( {x - x_0 } \right)^2 + \left( {y - y_0 } \right)^2 + \left( {z - z_0 } \right)^2 = R^2$$
Equation of an Ellipsoid
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} + \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }} = 1$$
Equation of an Ellipse
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = 1$$
Superposition (Addition and Subtraction) of Sine of Angles
$$\sin \theta _1 \pm \sin \theta _2 = 2\sin \left( {\frac{{\theta _1 \pm \theta _2 }}{2}} \right)\cos \left( {\frac{{\theta _1 \mp \theta _2 }}{2}} \right)$$
Superposition (Addition) of Cosine of Angles
$$\cos \theta _1 + \cos \theta _2 = 2\cos \left( {\frac{{\theta _1 + \theta _2 }}{2}} \right)\cos \left( {\frac{{\theta _1 - \theta _2 }}{2}} \right)$$
Superposition (Subtraction) of Cosine of Angles
$$\cos \theta _1 - \cos \theta _2 = - 2\sin \left( {\frac{{\theta _1 + \theta _2 }}{2}} \right)\sin \left( {\frac{{\theta _1 - \theta _2 }}{2}} \right)$$
Euler's Formula
$$e^{ \pm i\theta } = \cos \theta \pm i\sin \theta$$
Cosine Definition as an Infinite Series
$$\cos x = \sum\limits_{n = 0}^\infty {\frac{{\left( { - 1} \right)^n x^{2n} }}{{\left( {2n} \right)!}}}$$
Sine Definition as an Infinite Series
$$\sin x = \sum\limits_{n = 1}^\infty {\frac{{\left( { - 1} \right)^{n - 1} x^{2n - 1} }}{{\left( {2n - 1} \right)!}}}$$
Distance Between Two Points (2-D)
$$d = \sqrt {\left( {x_1 - x_2 } \right)^2 + \left( {y_1 - y_2 } \right)^2 }$$
Distance Between Two Points (3-D)
$$d = \sqrt {\left( {x_1 - x_2 } \right)^2 + \left( {y_1 - y_2 } \right)^2 + \left( {z_1 - z_2 } \right)^2 }$$
Cartesian to Polar Coordinates (2-D)
$$\begin{array}{*{20}c}
{x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } \\
{y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} \\
\end{array}$$
Eccentricity of an Ellipse
$$\varepsilon = \frac{{\sqrt {a^2 - b^2 } }}{a}$$
Eccentricity of a Hyperbola
$$\varepsilon = \frac{{\sqrt {a^2 + b^2 } }}{a}$$
Equation of a Hyperbola
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} - \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = 1$$
Equation of a Plane
$$Ax + By + Cz + D = 0$$
Equation of a Hyperboloid of One Sheet
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} - \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }} = 1$$
Equation of an Elliptic Cone
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }}$$
Equation of an Elliptic Cylinder
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = 1$$
Equation of a Hyperboloid of Two Sheets
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} - \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} - \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }} = 1$$
Equation of an Elliptic Paraboloid
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c}$$
Equation of a Hyperbolic Paraboloid
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} - \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c}$$
Equation of a Parabola
$$\left( {y - y_0 } \right)^2 = 4a\left( {x - x_0 } \right)$$
Cartesian to Spherical Coordinates (3-D)
$$\begin{array}{*{20}c}
{x = R\sin \theta \cos \phi } & {R = \sqrt {x^2 + y^2 + z^2 } } & {} \\
{y = R\sin \theta \sin \phi } & {\phi = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\
{z = R\cos \theta } & {\theta = \cos ^{ - 1} \left( {\frac{z}{{\sqrt {x^2 + y^2 + z^2 } }}} \right)} & {} \\
\end{array}$$
Cartesian to Cylindrical Coordinates (3-D)
$$\begin{array}{*{20}c}
{x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } & {} \\
{y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\
{z = z} & {z = z} & {} \\
\end{array}$$
Cylindrical to Spherical Coordinates (3-D)
$$\begin{array}{*{20}c}
{r = R\sin \theta } & {R = \sqrt {r^2 + z^2 } } & {} \\
{z = R\sin \theta } & {\phi = \theta } & {} \\
{\theta = \phi } & {\theta = \tan ^{ - 1} \left( {\frac{r}{z}} \right)} & {} \\
\end{array}$$
Arithmetic Series - Sequential Integers
$$\sum\limits_{k = 1}^n {k = \frac{{n\left( {n + 1} \right)}}{2}}$$
Arithmetic Series - Sequential Odd Integers
$$\sum\limits_{k = 1}^n {2k - 1 = n^2 }$$
Arithmetic Series - Sequential Squared Integers
$$\sum\limits_{k = 1}^n {k^2 = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}}$$
Finite Geometric Series
$$\sum\limits_{k = 1}^n {ar^{k - 1} = \frac{{a\left( {1 - r^n } \right)}}{{1 - r}}}$$
Infinite Geometric Series
$$\sum\limits_{k = 1}^\infty {ar^{k - 1} = \frac{a}{{1 - r}}}$$
Perimeter of a Circle
$$P = 2\pi r$$
Perimeter of a Rectangle
$$P = 2l + 2w$$
Perimeter of a Square
$$P = 4s$$
Perimeter of a Triangle
$$P = a + b + c$$
Perimeter of a Regular Polygon
$$P = ns$$
Spiral of Archimedes (Archimedean Spiral) in Polar Coordinates
$$r = a\theta$$
Arclength
$$s = r\theta$$
L'Hopital's Rule
$$\mathop {\lim }\limits_{x \to c} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to c} \frac{{f'\left( x \right)}}{{g'\left( x \right)}}$$
Limit of One over X to the nth Power
$$\mathop {\lim }\limits_{x \to \infty } \frac{1}{{x^n }} = 0$$
Limit of Arctangent X as X Approaches Infinity
$$\mathop {\lim }\limits_{x \to \infty } \tan ^{ - 1} \left( x \right) = \frac{\pi }{2}$$
Limit of Arctangent X as X Approaches Negative Infinity
$$\mathop {\lim }\limits_{x \to - \infty } \tan ^{ - 1} \left( x \right) = - \frac{\pi }{2}$$
Limit of e to the X power as X Approaches Negative Infinity
$$\mathop {\lim }\limits_{x \to - \infty } e^x = 0$$
Entropy Change
$$\Delta S^\circ = \sum {S^\circ {\rm{products}}} - \sum {S^\circ {\rm{reactants}}}$$
Enthalpy Change
$$\Delta H^\circ = \sum {H^\circ _f {\rm{products}}} - \sum {H^\circ _f {\rm{reactants}}}$$
Gibb's Free Energy Change Defined
$$\Delta G^\circ = \sum {G^\circ _f {\rm{products}}} - \sum {G^\circ _f {\rm{reactants}}}$$
Gibb's Free Energy Change in Terms of Enthalpy, Absolute Temperature, and Entropy
$$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$$
Gibb's Free Energy Change in Terms of Gas Constant, Absolute Temperature, and Equilibrium Constant
$$\Delta G^\circ = - RT\ln K = - 2.303RT\log K$$
Gibb's Free Energy Change in Terms of Number of Moles, Faraday, and Standard Reduction Potential
$$\Delta G^\circ = - n\Im E^\circ$$
Reaction Quotient
$$\begin{array}{*{20}c}
{Q = \frac{{\left[ C \right]^c \left[ D \right]^d }}{{\left[ A \right]^a \left[ B \right]^b }}} \\
{\begin{array}{*{20}c}
{where} & {aA + bB \to cC + dD} \\
\end{array}} \\
\end{array}$$
Electric Current
$$I = \frac{q}{t}$$
Cell Voltage
$$E_{cell} = E^\circ _{cell} - \frac{{RT}}{{n\Im }}\ln Q = E^\circ _{cell} - \frac{{0.0592}}{n}\log Q$$
Relationship between Equilibrium Constant and Cell Voltage
$$\log K = \frac{{nE^\circ }}{{0.0592}}$$
Molar Heat Capacity at Constant Pressure
$$C_p = \frac{{\Delta H}}{{\Delta T}}$$
Partial Pressure of a Gas
$$\begin{array}{*{20}c}
{P_A = P_{total} X_A } \\
{\begin{array}{*{20}c}
{where} & {X_A = \frac{{\begin{array}{*{20}c}
{moles} & A \\
\end{array}}}{{\begin{array}{*{20}c}
{total} & {moles} \\
\end{array}}}} \\
\end{array}} \\
\end{array}$$
Total Gas Pressure as Sum of Partial Pressures
$$P_{total} = P_A + P_B + P_C + \ldots$$
Number of Moles
$$n = \frac{m}{M}$$
Temperature in Kelvin from Degrees Celsius Conversion
$$K = ^\circ C + 273$$
Combined Gas Law
$$\frac{{P_1 V_1 }}{{n_1 T_1 }} = \frac{{P_2 V_2 }}{{n_2 T_2 }}$$
Density of a Material
$$D = \frac{m}{V}$$
Root Mean Square Velocity of Gas Molecules
$$u_{rms} = \sqrt {\frac{{3kT}}{m}} = \sqrt {\frac{{3RT}}{M}}$$
Kinetic Energy per molecule
$$\frac{{KE}}{{molecule}} = \frac{1}{2}m\upsilon ^2$$
Kinetic Energy per Mole
$$\frac{{KE}}{{mole}} = \frac{3}{2}RTn$$
Kinetic Energy per Mole
$$\frac{{KE}}{{mole}} = \frac{3}{2}RTn$$
Graham's Law of Effusion
$$\frac{{r_1 }}{{r_2 }} = \sqrt {\frac{{M_2 }}{{M_1 }}}$$
Molarity Defined
$$\begin{array}{*{20}c}
{molarity,} & {M = \frac{{\begin{array}{*{20}c}
{moles} & {solute} \\
\end{array}}}{{\begin{array}{*{20}c}
{liter} & {solution} \\
\end{array}}}} \\
\end{array}$$
Molality Defined
$$\begin{array}{*{20}c}
{molality,} & { = \frac{{\begin{array}{*{20}c}
{moles} & {solute} \\
\end{array}}}{{\begin{array}{*{20}c}
{kilogram} & {solvent} \\
\end{array}}}} \\
\end{array}$$
Freezing Point Depression
$$\Delta T_f = iK_f \times molality$$
Boiling Point Elevation
$$\Delta T_b = iK_b \times molality$$
Osmotic Pressure
$$\pi = \frac{{nRT}}{V}i$$
Specific Heat Capacity to Heat Equation
$$q = mc\Delta T$$
Acid Ionization Constant
$$K_a = \frac{{\left[ {H^ + } \right]\left[ {A^ - } \right]}}{{\left[ {HA} \right]}}$$
Base Ionization Constant
$$K_b = \frac{{\left[ {OH^ - } \right]\left[ {HB^ + } \right]}}{{\left[ B \right]}}$$
Ion Product Constant for Water
$$\begin{array}{*{20}c}
{K_w = \left[ {OH^ - } \right]\left[ {H^ + } \right] = K_a \times K_b } \\
{\begin{array}{*{20}c}
{ = 1.0 \times 10^{ - 14} } & {at} & {25^\circ C} \\
\end{array}} \\
\end{array}$$
pH Defined
$$pH = - \log \left[ {H^ + } \right]$$
pOH Defined
$$pOH = - \log \left[ {OH^ - } \right]$$
pH and pOH Relationship
$$14 = pH + pOH$$
Buffer Design Equation
$$pH \approx pK_a - \log \frac{{\left[ {HA} \right]_0 }}{{\left[ {A^ - } \right]_0 }}$$
pOH and Base Ionization Equilibrium Constant Relationship
$$pOH = pK_b + \log \frac{{\left[ {HB^ + } \right]}}{{\left[ B \right]}}$$
pKa Definition
$$pK_a = - \log K_a$$
pKb Definition
$$pK_b = - \log K_b$$
Gas Pressure and Concentration Relationship
$$K_p = K_c \left( {RT} \right)^{\Delta n}$$
Planck's Quantized (Quantum) Energy Equation
$$\Delta E = h\nu$$
Speed of Light to Wavelength and Frequency Relationship
$$c = \lambda \nu$$
De Broglie Wavelength
$$\lambda = \frac{h}{{m\upsilon }}$$
Linear Momentum
$$p = m\upsilon$$
Relationship between Energy and Principal Quantum Number
$$E_n = - R_H \left( {\frac{1}{{n^2 }}} \right) = \frac{{ - 2.178 \times 10^{ - 18} }}{{n^2 }}joule$$
Rydberg Equation
$$\Delta E = R_H \left( {\frac{1}{{n_i ^2 }} - \frac{1}{{n_f ^2 }}} \right)$$
van't Hoff equation
$$\ln \left( {\frac{{K_2 }}{{K_1 }}} \right) = - \frac{{\Delta H^\circ }}{R}\left[ {\frac{1}{{T_2 }} - \frac{1}{{T_1 }}} \right]$$
In [ ]: