EnvironmentManager.ipynb

In [1]:
from xv.chemistry.environment import EnvironmentManager
In [2]:
ke = EnvironmentManager()
ke
Out[2]:
2121838334256@EnvironmentManager

EnvironmentManager


Example:
ke = EnvironmentManager()

ke.get_categories()

ke.getRandomProblem()
ke.getRandomProblem(problem_type = 0)
...

ke.printProblem()
ke.printAnswer()
ke.printSolution()

ke.printProblemTypes()

doc_style: xv_doc

In [3]:
ke.printProblemTypes()
0. _problem_introduction_to_acid_rain
1. _problem_graph_of_acid_rain
2. _problem_chemicals_in_acid_rain
In [4]:
from IPython.display import HTML
n = len(ke._problemTemplates)
max_loop = 2
for j in range(0, max_loop):
    for i in range(n):
        problem_type = i
        display(HTML(f"<h2>problem_type: {problem_type}/{n-1} (loop {j}/{max_loop-1})</h2>"))
        ke.getRandomProblem(problem_type = problem_type, verbose = True)
        display(ke.printProblem())

        display(HTML(f"<h6>Answer:</h6>"))
        display(ke.printAnswer())

        display(HTML(f"<h6>Solution:</h6>"))
        display(ke.printSolution())
        pass

problem_type: 0/2 (loop 0/1)

Problem Template: _problem_introduction_to_acid_rain
Answer:
Solution:

problem_type: 1/2 (loop 0/1)

Problem Template: _problem_graph_of_acid_rain

Create a graph of acid rain
Answer:

Use one fo these:

from xv.plotter.helper import SchemDrawExamples

from xv.math.graph import GraphManager
Solution:

Use one fo these:

from xv.plotter.helper import SchemDrawExamples

from xv.math.graph import GraphManager

problem_type: 2/2 (loop 0/1)

Problem Template: _problem_chemicals_in_acid_rain

Write chemical formula and structure of molecules related to acid rain
Answer:

Solution:

Use MoleculesManager to see sample graph

from xv.chemistry.physical import MoleculesManager
ke = MoleculesManager()
ke

ke.getRandomProblem(problem_type = 0, search = 'IrO2')

problem_type: 0/2 (loop 1/1)

Problem Template: _problem_introduction_to_acid_rain
Answer:
Solution:

problem_type: 1/2 (loop 1/1)

Problem Template: _problem_graph_of_acid_rain

Create a graph of acid rain
Answer:

Use one fo these:

from xv.plotter.helper import SchemDrawExamples

from xv.math.graph import GraphManager
Solution:

Use one fo these:

from xv.plotter.helper import SchemDrawExamples

from xv.math.graph import GraphManager

problem_type: 2/2 (loop 1/1)

Problem Template: _problem_chemicals_in_acid_rain

Write chemical formula and structure of molecules related to acid rain
Answer:

Solution:

Use MoleculesManager to see sample graph

from xv.chemistry.physical import MoleculesManager
ke = MoleculesManager()
ke

ke.getRandomProblem(problem_type = 0, search = 'IrO2')

In [ ]:
 

Machine Learning

  1. Deal Banking Marketing Campaign Dataset With Machine Learning

TensorFlow

  1. Difference Between Scalar, Vector, Matrix and Tensor
  2. TensorFlow Deep Learning Model With IRIS Dataset
  3. Sequence to Sequence Learning With Neural Networks To Perform Number Addition
  4. Image Classification Model MobileNet V2 from TensorFlow Hub
  5. Step by Step Intent Recognition With BERT
  6. Sentiment Analysis for Hotel Reviews With NLTK and Keras
  7. Simple Sequence Prediction With LSTM
  8. Image Classification With ResNet50 Model
  9. Predict Amazon Inc Stock Price with Machine Learning
  10. Predict Diabetes With Machine Learning Algorithms
  11. TensorFlow Build Custom Convolutional Neural Network With MNIST Dataset
  12. Deal Banking Marketing Campaign Dataset With Machine Learning

PySpark

  1. How to Parallelize and Distribute Collection in PySpark
  2. Role of StringIndexer and Pipelines in PySpark ML Feature - Part 1
  3. Role of OneHotEncoder and Pipelines in PySpark ML Feature - Part 2
  4. Feature Transformer VectorAssembler in PySpark ML Feature - Part 3
  5. Logistic Regression in PySpark (ML Feature) with Breast Cancer Data Set

PyTorch

  1. Build the Neural Network with PyTorch
  2. Image Classification with PyTorch
  3. Twitter Sentiment Classification In PyTorch
  4. Training an Image Classifier in Pytorch

Natural Language Processing

  1. Spelling Correction Of The Text Data In Natural Language Processing
  2. Handling Text For Machine Learning
  3. Extracting Text From PDF File in Python Using PyPDF2
  4. How to Collect Data Using Twitter API V2 For Natural Language Processing
  5. Converting Text to Features in Natural Language Processing
  6. Extract A Noun Phrase For A Sentence In Natural Language Processing