In [1]:
from xv.chemistry.visualizer import VisualizationManager
In [2]:
ke = VisualizationManager()
ke
Out[2]:
2057209132368@VisualizationManager
Chemical Structure of molecules
Minimum Grade: 8
Maximum Grade: 12
Examples
--------
ke = VisualizationManager()
ke
ke.printProblemTypes()
ke.getRandomProblem()
ke.getRandomProblem(problem_type = 0)
...
ke.printProblem()
ke.printAnswer()
ke.printSolution()
doc_style: xv_doc
Chemical Structure of molecules
Minimum Grade: 8
Maximum Grade: 12
Examples
--------
ke = VisualizationManager()
ke
ke.printProblemTypes()
ke.getRandomProblem()
ke.getRandomProblem(problem_type = 0)
...
ke.printProblem()
ke.printAnswer()
ke.printSolution()
doc_style: xv_doc
In [3]:
ke.printProblemTypes()
0. _problem_search_visualization 1. _problem_spd_orbitals 2. _problem_simple_molecular_orbitals 3. _problem_pi_molecular_orbitals 4. _problem_SN2_reactions 5. _problem_simple_molecules 6. _problem_crystals 7. _problem_structure_and_bonding 8. _problem_visualize_structure_with_an_element 9. _problem_visualize_acids 10. _problem_organic_reactions 11. _problem_polymers
In [4]:
from IPython.display import HTML
n = len(ke._problemTemplates)
max_loop = 1
for j in range(0, max_loop):
for i in range(n):
problem_type = i
display(HTML(f"<h2>problem_type: {problem_type}/{n-1} (loop {j}/{max_loop-1})</h2>"))
ke.getRandomProblem(problem_type = problem_type, verbose = True)
display(ke.printProblem())
display(HTML(f"<h6>Solution:</h6>"))
display(ke.printSolution())
pass
problem_type: 0/11 (loop 0/0)
Problem Template: _problem_search_visualization
Search term is missing, supply search = 'SOME_SEARCH_TERM'
Solution:
None
problem_type: 1/11 (loop 0/0)
Problem Template: _problem_spd_orbitals
Draw the following orbital structures:
- s orbitals
- p orbitals
- d orbitals
- Shapes of the 4f orbitals in 3D
- shape and relative size of 1s, 2s and 2p orbitals
Solution:
problem_type: 2/11 (loop 0/0)
Problem Template: _problem_simple_molecular_orbitals
Draw molecular orbitals of:
- Molecular orbitals in Carbon Monoxide
- Molecular orbitals in Fluorine
- Molecular orbitals in Hydrogen
- Molecular orbitals in Hydrogen Fluoride
- Molecular orbitals in Nitrogen
Solution:
problem_type: 3/11 (loop 0/0)
Problem Template: _problem_pi_molecular_orbitals
Draw pi molecular orbitals of:
- Aromaticity - pi Molecular Orbitals of Benzene
- Aromaticity and pi Molecular Orbitals - Frost circles
- pi Molecular Orbitals of Acrolein
- pi Molecular Orbitals of Conjugated Butadiene
- pi Molecular Orbitals of the Allyl Anion
Solution:
problem_type: 4/11 (loop 0/0)
Problem Template: _problem_SN2_reactions
Give examples of SN2 reactions.
Solution:
- A simple SN2 reaction
- Nucleophilic Conjugate Substitution - The SN2? Mechanism
- Nucleophilic Substitution at Saturated Carbon: SN2 Reactions
- Nucleophilic substitution via SN1 and SN2
- SN2 Reaction: 2o Benzyl Chloride with HS -
- SN2 Reaction: Allyl Chloride with HS -
- SN2 Reaction: Benzyl Chloride with HS -
- Substrate structure controls substitution mechanism SN1 or SN2
problem_type: 5/11 (loop 0/0)
Problem Template: _problem_simple_molecules
Draw visualization of the following common molecules:
- H2 - Hydrogen
- Water - H2O
- H2S - Hydrogen sulfide
- H3
- HCl - Hydrogen chloride
- HCN - Hydrogen cyanide
- HF - Hydrogen fluoride
- HFO - Hypofluorous acid
- HFx
- O2H
- B12
- Boron trifluoride-BF3
- BH2
- BX3
- (CN)2 - Cyanogen
- [CN]- - Cyanide anion
- C2 - Acetylene
- C60 - Buckminsterfullerene
- C70
- CF4 - Tetrafluoromethane
- Methane - CH4
- CI4 - Carbon tetraiodide
- CO - Carbon Monoxide
- Carbon Dioxide-CO2
- Carbonyl sulfide - OCS
- [N3]- - Azide
- [NO]+
- N2 - Nitrogen gas
- N2O- Nitrous oxide
- NF3 - Nitrogen trifluoride
- NFO
- [NH2]-
- Ammonia - NH3
- NI3 - Nitrogen triiodide
- NNO
- NO - nitrogen monoxide, Nitric oxide
- [NO2]- - Nitrite
- [O2]-
- [O2]+
- NOBr
- [O2]-
- O3 - ozone
- OF2 - Oxygen difluoride
- SO2
- Sulfur trioxide- SO3
- [F2]+
- IF - iodine fluoride
- IF3 - Iodine trifluoride
- IF5 - Iodine pentafluoride
- IF7
- Phosphorus trifluoride - PF3
- PF5 - Phosphorus pentafluoride
- SF3 - sulfur trifluoride
- Sulfur tetrafluoride - SF4
- SF6 - Sulfur hexafluoride
- Al - Aluminium Polymer
- M9P
- P2
- P4
- PH2
- PH3 - Phosphine
- [S8]2+
- S8
- ClF - Chlorine monofluoride
- ICl - Iodine monochloride
- Ca - Calcium Polymer
- FeO
- CuA
- Nucleophilic Substitution at Saturated Carbon: SN2 Reactions
Solution:
- H2 - Hydrogen
- Water - H2O
- H2S - Hydrogen sulfide
- H3
- HCl - Hydrogen chloride
- HCN - Hydrogen cyanide
- HF - Hydrogen fluoride
- HFO - Hypofluorous acid
- HFx
- O2H
- B12
- Boron trifluoride-BF3
- BH2
- BX3
- (CN)2 - Cyanogen
- [CN]- - Cyanide anion
- C2 - Acetylene
- C60 - Buckminsterfullerene
- C70
- CF4 - Tetrafluoromethane
- Methane - CH4
- CI4 - Carbon tetraiodide
- CO - Carbon Monoxide
- Carbon Dioxide-CO2
- Carbonyl sulfide - OCS
- [N3]- - Azide
- [NO]+
- N2 - Nitrogen gas
- N2O- Nitrous oxide
- NF3 - Nitrogen trifluoride
- NFO
- [NH2]-
- Ammonia - NH3
- NI3 - Nitrogen triiodide
- NNO
- NO - nitrogen monoxide, Nitric oxide
- [NO2]- - Nitrite
- [O2]-
- [O2]+
- NOBr
- [O2]-
- O3 - ozone
- OF2 - Oxygen difluoride
- SO2
- Sulfur trioxide- SO3
- [F2]+
- IF - iodine fluoride
- IF3 - Iodine trifluoride
- IF5 - Iodine pentafluoride
- IF7
- Phosphorus trifluoride - PF3
- PF5 - Phosphorus pentafluoride
- SF3 - sulfur trifluoride
- Sulfur tetrafluoride - SF4
- SF6 - Sulfur hexafluoride
- Al - Aluminium Polymer
- M9P
- P2
- P4
- PH2
- PH3 - Phosphine
- [S8]2+
- S8
- ClF - Chlorine monofluoride
- ICl - Iodine monochloride
- Ca - Calcium Polymer
- FeO
- CuA
- Nucleophilic Substitution at Saturated Carbon: SN2 Reactions
problem_type: 6/11 (loop 0/0)
Problem Template: _problem_crystals
Draw the following crystal structures:
- Ice - water in the solid state
- carbon crystals for Diamond, Graphite, C60, Carbon Nanotube, Pentacene
- $I_2$ - Iodine
- Mg - Magnesium Polymer
- NaCl - Rocksalt, Halite, Sodium chloride
Solution:
problem_type: 7/11 (loop 0/0)
Problem Template: _problem_structure_and_bonding
Draw the following structure and bonding:
- Shape of 3p-orbitals in 3D
- [FeCl3Br3]3- (fac) C3v
- [FeCl3Br3]3- (mer) C2v
- [FeCl4Br2]3- (cis) C2v
- [FeCl4Br2]3- (trans) D4h
- 1-Bromo-2-chloroethene Cs
- 1,2-Dichloro-1,2-difluoroethane C2H2F2Cl2 Ci
- 1,2-Dichlorobenzene - C2v
- 1,3-Dichlorobenzene - C2v
- 1,4-Dichlorobenzene D2h
- Ammonia C3V
- Analysis of Atomic Displacements in Water
- Aniline Yellow
- Anomeric Effect for different substituents
- Aromaticity - pi Molecular Orbitals of Benzene
- Aromaticity and pi Molecular Orbitals - Frost circles
- Atomic Orbitals - shape and relative size of 1s, 2s and 2p orbitals
- Au25(SEt)18, a Nearly Naked Thiolate-Protected Au25 Cluster
- Azo-dye Synthesis
- Benzene chromium tricarbonyl - C3v
- Benzene D6h
- Bonding orbitals in Acetylene (Ethyne) sp
- Bonding orbitals in Allene
- Bonding orbitals in Ammonia - sp3 hybrids
- Bonding orbitals in Benzene
- Bonding orbitals in Ethylene (Ethene) sp2
- Bonding orbitals in Formaldehyde
- Bonding orbitals in Methane - sp3 hybrids
- Boric Acid C3h
- Boron Trifluoride (BF3) - D3h
- Cnh | Cnv | S2n | Cn Point groups
- Cs | Ci | C1 Pointgroups
- CHFClBr C1
- cis-[PtCl2(NH3)2] Cisplatin C2v
- Conjugated Structures Cyclooctatetraene, Dication and Dianion
- Conjugated Structures - Cyclophanes and Annulenes
- Cyclohexane (boat) C2v
- Cyclohexane (chair) - D3d
- Cyclooctatetraene D2d
- Dnh | Dnd | Dn Pointgroups
- Diborane (B2H6) - D2h
- Dipoles and Electrostatic Surfaces XeF4, ClF3 and CCl3Br
- Disperse Orange 1
- Eclipsed Ferrocene D5h
- Electron Circulation in a Magnetic Field
- Electrostatic surfaces-Hydration of Carbonyl Compounds
- Electrostatic surfaces-Lone Pair Conjugation
- Electrostatic surfaces-polar
- Electrostatic surfaces-Unsaturated Molecules
- Ethane Eclipsed D3h
- Ethene - D2h
- Fluorination of Medicinal Compounds
- Fluorination of Medicinal Compounds - Amide Mimetic
- Fluorination of Medicinal Compounds - Conformation Effect
- Fluorination of Medicinal Compounds - The Halex Reaction
- Fluorination of Medicinal Compounds - Uracil and 5-Fluorouracil
- Folding Process of Myoglobin - Protein Folding Kinetics
- Framework Model of Protein Folding
- Hairpin Folding from Chain
- Hydrazine (N2H4) C2
- Hydrogen Peroxide C2
- Improper Rotation - Allene S4
- Interaction of Bromine Br2 and C=O on Propanone
- Interactions between Allyl Molecular Orbitals and Metal d Orbitals
- Interactions between Benzene Molecular Orbitals and Metal d Orbitals
- Interactions between Butadiene Molecular Orbitals and Metal d Orbitals
- Interactions between Carbene Molecular Orbitals and Metal d Orbitals
- Interactions between Carbon Monoxide Molecular Orbitals and Metal d Orbitals
- Interactions between Cyclobutadiene Molecular Orbitals and Metal d Orbitals
- Interactions between Cyclopentadienyl Molecular Orbitals and Metal d Orbitals
- Interactions between Dihydrogen Molecular Orbitals and Metal d Orbitals
- Interactions between Ethylene Molecular Orbitals and Metal d Orbitals
- Interactions between Phosphine Molecular Orbitals and Metal d Orbitals
- Introduction to Gold Nanoparticles (GNPs)
- Introductory Structures Linoleic acid X-Ray Structure
- Introductory Structures Methoxatin
- Introductory Structures Methylamine InfraRed
- Introductory Structures Selected Amino Acids
- Introductory Structures Sucrose
- Introductory Structures Allotropes of Carbon (Diamond and Graphite) and Pentacene
- Inversion - Benzene
- Janus Green B
- Metal d orbitals in a tetrahedral crystal field
- Metal d orbitals in an octahedral crystal field
- Methane Td
- Mn2F6 - D2h
- Molecular orbitals in Carbon Monoxide
- Molecular orbitals in Fluorine
- Molecular orbitals in Hydrogen
- Molecular orbitals in Hydrogen Fluoride
- Molecular orbitals in Nitrogen
- Molecules with a Plane of Symmetry
- NHF2 Cs
- Nickel tetracarbonyl - Ni(CO)4 - D4h
- Octahedral Sulfur Hexafluoride - SF6 - Oh
- Oil Red O
- Operations rotations
- Orbital-orbital Interactions and Symmetry Adapted Linear Combinations
- Os(CO)4Cl2 - C2v
- p-mercaptobenzoic acid (p-MBA)-protected Au102 nanoparticle
- PCl5 D3h
- Phosphorous Oxychloride C3v
- Possible morphologies of Au Nanoparticles
- Possible morphologies of Au Nanoparticles - Cube
- Possible morphologies of Au Nanoparticles - Cubo-truncated rhombic dodecahedron
- Possible morphologies of Au Nanoparticles - Cuboctahedron
- Possible morphologies of Au Nanoparticles - d-trigon
- Possible morphologies of Au Nanoparticles - Decahedron
- Possible morphologies of Au Nanoparticles - Icosahedron
- Possible morphologies of Au Nanoparticles - Octahedron
- Possible morphologies of Au Nanoparticles - Octo-truncated rhombic dodecahedron
- Possible morphologies of Au Nanoparticles - Rhombic dodecahedron
- Possible morphologies of Au Nanoparticles - Truncated cube
- Possible morphologies of Au Nanoparticles - Truncated octahedron
- Possible morphologies of Au Nanoparticles - Twinned truncated octahedron
- PVP encapsulated Au nanoparticles
- Rotational Spectroscopy Examples
- Rotational Spectroscopy Introduction
- Rotations of d Orbitals
- Ruthenium triethylenediamine - Ru(en)32+ - D3
- SALC - Octahedral Complex
- SALC Ammonia - Atomic Orbitals
- SALC Ammonia - Molecular Orbitals
- SALC Analysis of NO2
- SALC d-d Orbital Overlap
- SALC s-p Orbital Overlap
- Selected Polycyclic Structures
- SF4 C2v
- Shape of p-orbitals in 3D
- Shape of s-orbitals in 3D
- Shapes of the 3d orbitals in 3D
- Shapes of the 4f orbitals in 3D
- Spectroscopy Introduction
- Spectroscopy Orbitals
- Spectroscopy Translations
- Spiroketal Formation - Stereoelectronic Effects
- Staggered Ethane - D3d
- Staggered Ferrocene D5d
- Stereoelectronic Effects The Anomeric Effect in Spiroketals
- Stereoelectronic Effects The Anomeric Effect -Cl
- Stereoelectronic Effects The Anomeric Effect Methoxy -OMe
- Stretching modes of trans-[PdCl2(NH3)2
- Stretching modes of cis-[PdCl2(NH3)2]
- Stretching modes of SF6
- Symbols, Terminology and Constants in Science and Mathematics
- Symmetry Elements Mirror Planes
- Symmetry Flowchart
- Symmetry Operations
- Td | Oh | Ih Point groups
- The Colour of Dyes
- trans-[PtCl2(NH3)2] Transplatin D2h
- trans-1,2-dichloroethylene C2h
- Trichloromethane - C3v
- Triphenylphosphine C3
- Twisted Ferrocene D5
- Ultraviolet/Visible UV/Vis Spectroscopy
- UV absorption in Ethylene (Ethene) and Butadiene
- UV absorption in Linear Polyenes
- Vibrational spectroscopy - Introduction
- Vibrational Spectroscopy Carbon Dioxide
- Vibrational Spectroscopy Hydrogen Chloride
- Vibrational Spectroscopy Water
- Vibrations of Ammonia
- Vibrations of Benzene
- Vibrations of Boron Trifluoride
- Vibrations of Carbon Dioxide
- Vibrations of Ethylene (Ethene)
- Vibrations of Hydrogen Cyanide
- Vibrations of Iron Pentacarbonyl
- Vibrations of Methane
- Vibrations of Nickel Tetracarbonyl
- Vibrations of Phophorus Pentafluoride
- Vibrations of Water
- Water C2v
- Xenon tetrafluoride (XeF4) - D4h
- pi Molecular Orbitals of Acrolein
- pi Molecular Orbitals of Conjugated Butadiene
- pi Molecular Orbitals of the Allyl Anion
Solution:
- Shape of 3p-orbitals in 3D
- [FeCl3Br3]3- (fac) C3v
- [FeCl3Br3]3- (mer) C2v
- [FeCl4Br2]3- (cis) C2v
- [FeCl4Br2]3- (trans) D4h
- 1-Bromo-2-chloroethene Cs
- 1,2-Dichloro-1,2-difluoroethane C2H2F2Cl2 Ci
- 1,2-Dichlorobenzene - C2v
- 1,3-Dichlorobenzene - C2v
- 1,4-Dichlorobenzene D2h
- Ammonia C3V
- Analysis of Atomic Displacements in Water
- Aniline Yellow
- Anomeric Effect for different substituents
- Aromaticity - pi Molecular Orbitals of Benzene
- Aromaticity and pi Molecular Orbitals - Frost circles
- Atomic Orbitals - shape and relative size of 1s, 2s and 2p orbitals
- Au25(SEt)18, a Nearly Naked Thiolate-Protected Au25 Cluster
- Azo-dye Synthesis
- Benzene chromium tricarbonyl - C3v
- Benzene D6h
- Bonding orbitals in Acetylene (Ethyne) sp
- Bonding orbitals in Allene
- Bonding orbitals in Ammonia - sp3 hybrids
- Bonding orbitals in Benzene
- Bonding orbitals in Ethylene (Ethene) sp2
- Bonding orbitals in Formaldehyde
- Bonding orbitals in Methane - sp3 hybrids
- Boric Acid C3h
- Boron Trifluoride (BF3) - D3h
- Cnh | Cnv | S2n | Cn Point groups
- Cs | Ci | C1 Pointgroups
- CHFClBr C1
- cis-[PtCl2(NH3)2] Cisplatin C2v
- Conjugated Structures Cyclooctatetraene, Dication and Dianion
- Conjugated Structures - Cyclophanes and Annulenes
- Cyclohexane (boat) C2v
- Cyclohexane (chair) - D3d
- Cyclooctatetraene D2d
- Dnh | Dnd | Dn Pointgroups
- Diborane (B2H6) - D2h
- Dipoles and Electrostatic Surfaces XeF4, ClF3 and CCl3Br
- Disperse Orange 1
- Eclipsed Ferrocene D5h
- Electron Circulation in a Magnetic Field
- Electrostatic surfaces-Hydration of Carbonyl Compounds
- Electrostatic surfaces-Lone Pair Conjugation
- Electrostatic surfaces-polar
- Electrostatic surfaces-Unsaturated Molecules
- Ethane Eclipsed D3h
- Ethene - D2h
- Fluorination of Medicinal Compounds
- Fluorination of Medicinal Compounds - Amide Mimetic
- Fluorination of Medicinal Compounds - Conformation Effect
- Fluorination of Medicinal Compounds - The Halex Reaction
- Fluorination of Medicinal Compounds - Uracil and 5-Fluorouracil
- Folding Process of Myoglobin - Protein Folding Kinetics
- Framework Model of Protein Folding
- Hairpin Folding from Chain
- Hydrazine (N2H4) C2
- Hydrogen Peroxide C2
- Improper Rotation - Allene S4
- Interaction of Bromine Br2 and C=O on Propanone
- Interactions between Allyl Molecular Orbitals and Metal d Orbitals
- Interactions between Benzene Molecular Orbitals and Metal d Orbitals
- Interactions between Butadiene Molecular Orbitals and Metal d Orbitals
- Interactions between Carbene Molecular Orbitals and Metal d Orbitals
- Interactions between Carbon Monoxide Molecular Orbitals and Metal d Orbitals
- Interactions between Cyclobutadiene Molecular Orbitals and Metal d Orbitals
- Interactions between Cyclopentadienyl Molecular Orbitals and Metal d Orbitals
- Interactions between Dihydrogen Molecular Orbitals and Metal d Orbitals
- Interactions between Ethylene Molecular Orbitals and Metal d Orbitals
- Interactions between Phosphine Molecular Orbitals and Metal d Orbitals
- Introduction to Gold Nanoparticles (GNPs)
- Introductory Structures Linoleic acid X-Ray Structure
- Introductory Structures Methoxatin
- Introductory Structures Methylamine InfraRed
- Introductory Structures Selected Amino Acids
- Introductory Structures Sucrose
- Introductory Structures Allotropes of Carbon (Diamond and Graphite) and Pentacene
- Inversion - Benzene
- Janus Green B
- Metal d orbitals in a tetrahedral crystal field
- Metal d orbitals in an octahedral crystal field
- Methane Td
- Mn2F6 - D2h
- Molecular orbitals in Carbon Monoxide
- Molecular orbitals in Fluorine
- Molecular orbitals in Hydrogen
- Molecular orbitals in Hydrogen Fluoride
- Molecular orbitals in Nitrogen
- Molecules with a Plane of Symmetry
- NHF2 Cs
- Nickel tetracarbonyl - Ni(CO)4 - D4h
- Octahedral Sulfur Hexafluoride - SF6 - Oh
- Oil Red O
- Operations rotations
- Orbital-orbital Interactions and Symmetry Adapted Linear Combinations
- Os(CO)4Cl2 - C2v
- p-mercaptobenzoic acid (p-MBA)-protected Au102 nanoparticle
- PCl5 D3h
- Phosphorous Oxychloride C3v
- Possible morphologies of Au Nanoparticles
- Possible morphologies of Au Nanoparticles - Cube
- Possible morphologies of Au Nanoparticles - Cubo-truncated rhombic dodecahedron
- Possible morphologies of Au Nanoparticles - Cuboctahedron
- Possible morphologies of Au Nanoparticles - d-trigon
- Possible morphologies of Au Nanoparticles - Decahedron
- Possible morphologies of Au Nanoparticles - Icosahedron
- Possible morphologies of Au Nanoparticles - Octahedron
- Possible morphologies of Au Nanoparticles - Octo-truncated rhombic dodecahedron
- Possible morphologies of Au Nanoparticles - Rhombic dodecahedron
- Possible morphologies of Au Nanoparticles - Truncated cube
- Possible morphologies of Au Nanoparticles - Truncated octahedron
- Possible morphologies of Au Nanoparticles - Twinned truncated octahedron
- PVP encapsulated Au nanoparticles
- Rotational Spectroscopy Examples
- Rotational Spectroscopy Introduction
- Rotations of d Orbitals
- Ruthenium triethylenediamine - Ru(en)32+ - D3
- SALC - Octahedral Complex
- SALC Ammonia - Atomic Orbitals
- SALC Ammonia - Molecular Orbitals
- SALC Analysis of NO2
- SALC d-d Orbital Overlap
- SALC s-p Orbital Overlap
- Selected Polycyclic Structures
- SF4 C2v
- Shape of p-orbitals in 3D
- Shape of s-orbitals in 3D
- Shapes of the 3d orbitals in 3D
- Shapes of the 4f orbitals in 3D
- Spectroscopy Introduction
- Spectroscopy Orbitals
- Spectroscopy Translations
- Spiroketal Formation - Stereoelectronic Effects
- Staggered Ethane - D3d
- Staggered Ferrocene D5d
- Stereoelectronic Effects The Anomeric Effect in Spiroketals
- Stereoelectronic Effects The Anomeric Effect -Cl
- Stereoelectronic Effects The Anomeric Effect Methoxy -OMe
- Stretching modes of trans-[PdCl2(NH3)2
- Stretching modes of cis-[PdCl2(NH3)2]
- Stretching modes of SF6
- Symbols, Terminology and Constants in Science and Mathematics
- Symmetry Elements Mirror Planes
- Symmetry Flowchart
- Symmetry Operations
- Td | Oh | Ih Point groups
- The Colour of Dyes
- trans-[PtCl2(NH3)2] Transplatin D2h
- trans-1,2-dichloroethylene C2h
- Trichloromethane - C3v
- Triphenylphosphine C3
- Twisted Ferrocene D5
- Ultraviolet/Visible UV/Vis Spectroscopy
- UV absorption in Ethylene (Ethene) and Butadiene
- UV absorption in Linear Polyenes
- Vibrational spectroscopy - Introduction
- Vibrational Spectroscopy Carbon Dioxide
- Vibrational Spectroscopy Hydrogen Chloride
- Vibrational Spectroscopy Water
- Vibrations of Ammonia
- Vibrations of Benzene
- Vibrations of Boron Trifluoride
- Vibrations of Carbon Dioxide
- Vibrations of Ethylene (Ethene)
- Vibrations of Hydrogen Cyanide
- Vibrations of Iron Pentacarbonyl
- Vibrations of Methane
- Vibrations of Nickel Tetracarbonyl
- Vibrations of Phophorus Pentafluoride
- Vibrations of Water
- Water C2v
- Xenon tetrafluoride (XeF4) - D4h
- pi Molecular Orbitals of Acrolein
- pi Molecular Orbitals of Conjugated Butadiene
- pi Molecular Orbitals of the Allyl Anion
problem_type: 8/11 (loop 0/0)
Problem Template: _problem_visualize_structure_with_an_element
Draw visualization for compounds and ions of element Cl:
- HOCl-SO3-
- (PNCl2)3
- (PNCl2)3 - Hexachlorophosphazene
- [B4Cl4] - Point Group Td
- [ClF2]+ - Chlorine difluoride
- [ClF6]- - Chlorine Hexafluoride anion
- [ClF6]+ - Chlorine Hexafluoride cation
- [ClO]- Chlorine monoxide
- [ClO2]- - Chlorine dioxide anion
- [ClO3]- - Chlorate
- [ClO4]- - Perchlorate
- [ClSO3]-
- [HCl2]-
- [PCl6]- - Phosphorus hexachloride
- AlCl3 - Aluminium chloride Polymer
- Cl(OH)4
- Cl2 - Chlorine Polymer
- Cl2BNPr2
- Cl2O - Dichlorine monoxide
- Cl2O6(g) - Dichlorine hexoxide
- Cl2O6(s) - Dichlorine hexoxide
- Cl2O7 - Dichlorine heptoxide
- Cl5PtClPtCl5
- ClF - Chlorine monofluoride
- ClF2SbF6
- ClF3
- ClF5 - Chlorine pentafluoride
- [ClO2]- - Chlorine dioxide anion
- ClO4Mo(OH2)5
- ClOH - Hypochlorous acid
- HCl - Hydrogen chloride
- HClO2 - Chlorous acid
- HClO3 - Chloric acid
- ICl - Iodine monochloride
- InCl - Indium chloride
- InCl - indium chloride
- InCl2 - Indium dichloride (A)
- KCl - Potassium chloride Polymer
- LiCl - Lithium chloride
- NaCl
- NCl3 - Nitrogen trichloride
- Phosphorus pentachloride - PCl5
- POCl3 - Phosphoryl chloride
- S2Cl2 - Disulfur dichloride
- SCl2 - Sulfur Dichloride
Solution:
- HOCl-SO3-
- (PNCl2)3
- (PNCl2)3 - Hexachlorophosphazene
- [B4Cl4] - Point Group Td
- [ClF2]+ - Chlorine difluoride
- [ClF6]- - Chlorine Hexafluoride anion
- [ClF6]+ - Chlorine Hexafluoride cation
- [ClO]- Chlorine monoxide
- [ClO2]- - Chlorine dioxide anion
- [ClO3]- - Chlorate
- [ClO4]- - Perchlorate
- [ClSO3]-
- [HCl2]-
- [PCl6]- - Phosphorus hexachloride
- AlCl3 - Aluminium chloride Polymer
- Cl(OH)4
- Cl2 - Chlorine Polymer
- Cl2BNPr2
- Cl2O - Dichlorine monoxide
- Cl2O6(g) - Dichlorine hexoxide
- Cl2O6(s) - Dichlorine hexoxide
- Cl2O7 - Dichlorine heptoxide
- Cl5PtClPtCl5
- ClF - Chlorine monofluoride
- ClF2SbF6
- ClF3
- ClF5 - Chlorine pentafluoride
- [ClO2]- - Chlorine dioxide anion
- ClO4Mo(OH2)5
- ClOH - Hypochlorous acid
- HCl - Hydrogen chloride
- HClO2 - Chlorous acid
- HClO3 - Chloric acid
- ICl - Iodine monochloride
- InCl - Indium chloride
- InCl - indium chloride
- InCl2 - Indium dichloride (A)
- KCl - Potassium chloride Polymer
- LiCl - Lithium chloride
- NaCl
- NCl3 - Nitrogen trichloride
- Phosphorus pentachloride - PCl5
- POCl3 - Phosphoryl chloride
- S2Cl2 - Disulfur dichloride
- SCl2 - Sulfur Dichloride
problem_type: 9/11 (loop 0/0)
Problem Template: _problem_visualize_acids
Draw the following acid structures:
- H2S2O8 Peroxydisulfuric acid
- H2SeO4 - Selenic acid
- Sulfuric acid- H2SO4
- Phosphorous acid -H3PO3
- H3PO4 - Phosphoric acid
- H5IO6 - Periodic acid
- HClO2 - Chlorous acid
- HClO3 - Chloric acid
- HFO - Hypofluorous acid
- HIO4 - Periodic acid
- HNO2 - Nitrous acid
- HNO3 - Nitric acid
- B(OH)3 - Boric acid
- H2CO3 -Carbonic acid
- [P3O10]5- - Triphosphoric acid (V)
- Si(OH)4 - Silicic acid
- ClOH - Hypochlorous acid
- [CrEDTA]- - Chromium Ethylenediaminetetraacetic acid
- Boric Acid C3h
- Introductory Structures Linoleic acid X-Ray Structure
- Introductory Structures Selected Amino Acids
- p-mercaptobenzoic acid (p-MBA)-protected Au102 nanoparticle
- Acid phosphatase
- Acid chloride formation - Phosphorus Pentachloride
- Acid Chloride Formation - Thionyl Chloride
- Acid-Catalysed Bromination of Ketones
- Acid-catalysed ester hydrolysis and transesterification
- Asymmetric Hydrophosphonylation of imine with chiral Br?nsted acid-phosphate catalyst
- Benzyne formation - Diazotization-decarboxylation of Anthranilic acid (2-aminobenzoic acid)
- Carbenes - Methylation of carboxylic acid using diazomethane
- Double bond geometry - Stereospecific Peterson reaction (Acid elimination - Diastereoisomer 1)
- Double bond geometry - Stereospecific Peterson reaction (Acid elimination - Diastereoisomer 2)
- Enamine Acylation - Reaction With An Acid Chloride
- Endiadric Acid A - Cycloaddition reactions in Nature
- Endiandric Acid Cascade
- Endiandric Acid D - Electrocyclic Reactions in Nature
- Endiandric Acid E - Electrocyclic Reactions in Nature
- Endiandric Acid Precursor - Electrocyclic Reactions in Nature
- Molecules with a Plane of Symmetry - Feist's Acid
- Rearrangements - Benzilic Acid
- Sch?llkopf Bis-lactim Amino Acid Synthesis
- Tartaric acid - Newman projections
Solution:
- H2S2O8 Peroxydisulfuric acid
- H2SeO4 - Selenic acid
- Sulfuric acid- H2SO4
- Phosphorous acid -H3PO3
- H3PO4 - Phosphoric acid
- H5IO6 - Periodic acid
- HClO2 - Chlorous acid
- HClO3 - Chloric acid
- HFO - Hypofluorous acid
- HIO4 - Periodic acid
- HNO2 - Nitrous acid
- HNO3 - Nitric acid
- B(OH)3 - Boric acid
- H2CO3 -Carbonic acid
- [P3O10]5- - Triphosphoric acid (V)
- Si(OH)4 - Silicic acid
- ClOH - Hypochlorous acid
- [CrEDTA]- - Chromium Ethylenediaminetetraacetic acid
- Boric Acid C3h
- Introductory Structures Linoleic acid X-Ray Structure
- Introductory Structures Selected Amino Acids
- p-mercaptobenzoic acid (p-MBA)-protected Au102 nanoparticle
- Acid phosphatase
- Acid chloride formation - Phosphorus Pentachloride
- Acid Chloride Formation - Thionyl Chloride
- Acid-Catalysed Bromination of Ketones
- Acid-catalysed ester hydrolysis and transesterification
- Asymmetric Hydrophosphonylation of imine with chiral Br?nsted acid-phosphate catalyst
- Benzyne formation - Diazotization-decarboxylation of Anthranilic acid (2-aminobenzoic acid)
- Carbenes - Methylation of carboxylic acid using diazomethane
- Double bond geometry - Stereospecific Peterson reaction (Acid elimination - Diastereoisomer 1)
- Double bond geometry - Stereospecific Peterson reaction (Acid elimination - Diastereoisomer 2)
- Enamine Acylation - Reaction With An Acid Chloride
- Endiadric Acid A - Cycloaddition reactions in Nature
- Endiandric Acid Cascade
- Endiandric Acid D - Electrocyclic Reactions in Nature
- Endiandric Acid E - Electrocyclic Reactions in Nature
- Endiandric Acid Precursor - Electrocyclic Reactions in Nature
- Molecules with a Plane of Symmetry - Feist's Acid
- Rearrangements - Benzilic Acid
- Sch?llkopf Bis-lactim Amino Acid Synthesis
- Tartaric acid - Newman projections
problem_type: 10/11 (loop 0/0)
Problem Template: _problem_organic_reactions
Draw the following organic structures:
- [1,5]-H sigmatropic shift
- [2,3]-Sigmatropic rearrangements
- [2+2] Ketene Cycloaddition
- [4+3] Oxyallyl Cycloaddition
- [4+6] Thermal Cycloaddition
- 1,2,3-Triazole formation by cycloaddition
- 1,3-Dipolar Cycloaddition Formation of a Simple Isoxazole
- 1,3-Dipolar cycloadditions - nitrone/alkene
- 2-Hydroxypyridine-Tautomerism
- 4-Hydroxypyridine-Tautomerism
- 8-Phenylmenthol auxiliary-controlled Diels-Alder reaction
- A simple SN2 reaction
- Acetal formation
- Achiral compounds with more than one stereogenic centre - Meso
- Acid chloride formation - Phosphorus Pentachloride
- Acid Chloride Formation - Thionyl Chloride
- Acid-Catalysed Bromination of Ketones
- Acid-catalysed ester hydrolysis and transesterification
- Acylation at carbon Claisen ester condensation
- Addition to Aromatic Rings Facilitated by Two Nitro Groups
- Addition-Elimination Substitution on Aromatic Chloride Facilitated by a para-nitro group
- Aldol Reaction - Enolisation and formation of anti product
- Aldol Reaction - Enolisation and formation of syn product
- Aldol Reaction - Simple Diastereoselectivity Cis gives Syn
- Aldol Reaction - Simple Diastereoselectivity Trans give Anti
- Aldol reaction of cyclopentanone
- Aldol reaction of cyclopentanone (Step 1)
- Aldol reaction of cyclopentanone (Step 2)
- Aldol reaction of cyclopentanone (Step 3)
- Allylic Bromination of Cyclohexene
- Allylic Bromination of Isobutene
- Allylic Oxidation with Selenium Dioxide
- Allylic Strain Epoxidation of E-Allyl Silanes
- Allylic Strain Epoxidation of Z-Allyl Silanes
- Amide formation
- Aromatic Heterocycles Overview
- Aromatic Substitution via Benzyne Intermediate
- Asymmetic Alkylation of SAMP Hydrazone
- Asymmetric Carbonyl Ene Reaction - Controlled by Chiral Phosphoramide
- Asymmetric Hydrophosphonylation of imine with chiral Br?nsted acid-phosphate catalyst
- Asymmetric intermolecular aldol catalysed by proline
- Asymmetric intermolecular aldol catalysed by proline - Hydroxyacetone enamine and aldehyde
- Asymmetric Methylation of Carbonyl with Dimethyl Zinc
- Asymmetric reduction of carbonyl with CBS reagent
- Asymmetric Sulfoxidation
- Asymmetric Sulfoxidation Detail
- Azo-dye Synthesis
- Baldwin's Rules Classes of cyclization
- Bamford-Stevens reaction
- Bamford-Stevens reaction Step 1
- Bamford-Stevens reaction - decomposition of diazo intermediate
- Base catalysed enolate formation (Enolization)
- Base-Catalysed Bromination of Ketones - Summary
- Base-catalysed enolization
- Baylis-Hillman Reaction
- Benzyne formation - Diazotization-decarboxylation of Anthranilic acid (2-aminobenzoic acid)
- Beta-Keto Sulfoxide reduction chelation
- Beta-Keto Sulfoxide reduction-intramolecular delivery
- Beta-Keto Sulfoxide reduction-stereodivergent
- Brief history of ChemTube3D
- Bromine and pent-2-ene
- Butane Newman Projections
- Carbenes - Formation
- Carbenes - Formation (from diazocarbonyl compounds)
- Carbenes - Formation (Thermal decomposition via hydrazone)
- Carbenes - Formation (via alpha elimination)
- Carbenes - Methylation of carboxylic acid using diazomethane
- Carbenes - Photolysis of diazomethane to produce a carbene
- Carbenes - Reactions
- Carbenes (Alkene insertion - Singlet carbene)
- Chiral BINAP Without Stereogenic Centres
- Chiral Cyanohydrins - Configuration
- Chiral molecules R or S
- Chiral molecules II R or S
- Chiral molecules III R or S
- Cis-Decalin conformations
- Claisen rearrangement - Sigmatropic rearrangement
- Claisen rearrangement on an aromatic system - [3,3]-Sigmatropic rearrangement
- Classes of cyclization (3-exo-tet)
- Classes of cyclization (5-exo-trig)
- Classes of cyclization (6-endo-dig)
- Conformation vs Configuration
- Conformational Analysis - Pea Moth Pheromone
- Conformations of Butane
- Conformations of Butane - energetics
- Conformations of cyclohexane
- Conformations of ethane - Newman projection
- Conjugate Addition of Diethylamine to an Unsaturated Ester
- Conjugate Addition of Diethylamine to an Unsaturated Nitrile (Acrylonitrile)
- Conjugate Addition of Enamine to Unsaturated Imine
- Conjugate addition of enolates
- Conjugate addition of enolates - Overview
- Conjugate Addition of MeSH to an Unsaturated Aldehyde
- Conjugate addition of peroxide to form epoxides (E-enone)
- Conjugate addition of peroxide to form epoxides (Z-enone)
- Conjugate Addition Reactions
- Cyanohydrin formation
- Cyanohydrin formation (Stereochemistry)
- Cyclic acetal formation
- Diastereoisomers are stereoisomers that are not enantiomers
- Diastereoselective Ketone Reduction Chelation zinc borohydride
- Diastereoselective ketone reduction Felkin-Anh Transition State
- Diastereoselectivity Chelate Cram Addition
- Diels-Alder - Stereochemistry of the dienophile
- Diels-Alder reaction - endo vs exo
- Diels-Alder - 2,3-Dimethylbutadiene and Acrolein(propenal)
- Diels-Alder - Endo and Exo adducts
- Diels-Alder - endo rule - acyclic examples
- Diels-Alder - endo vs exo Methyl vinyl ketone
- Diels-Alder - Quinone as Dienophile - Steroid Framework
- Diels-Alder - s-cis conformation
- Diels-Alder - Stereochemistry of the diene Summary
- Diels-Alder - Stereochemistry of the dienophile
- Diels-Alder - Stereochemistry of the E,E-diene (trans-trans)
- Diels-Alder - Stereochemistry of the Z,E-diene (cis-trans)
- Diels-Alder - Stereochemistry of the Z,Z-diene (cis-cis)
- Diels-Alder orbital explanation for the endo rule
- Diels-Alder reaction - Working out which product is endo
- Diels-Alder reaction Introduction - Identifying a Diels-Alder Reaction
- Diels-Alder reaction Overview
- Diels-Alder: E,E (trans, trans) diene - Stereochemistry of a phenyl diene
- Diels-Alder: E,Z (trans, cis) Diene - Stereochemistry Of The Diene
- Diels-Alder: Z,Z (cis,cis) diene - Stereochemistry of the diene
- Dimedone synthesis
- Direct conjugate addition with enols
- Double bond geometry - Conjugate addition of peroxide to form epoxides
- Double bond geometry - Stereospecific Peterson reaction
- Double bond geometry - Stereospecific Peterson reaction (Acid elimination - Diastereoisomer 1)
- Double bond geometry - Stereospecific Peterson reaction (Acid elimination - Diastereoisomer 2)
- Double bond geometry - Stereospecific Peterson reaction (Base elimination - Diastereoisomer 1)
- Double bond geometry - The Peterson reaction
- E-Selective Wittig Reaction
- Electrocyclic - Conrotatory ring closure/opening
- Electrocyclic - Disrotatory ring closure/opening
- Electrocyclic reactions are stereospecific
- Electrophilic addition to alkenes - Symmetrical and Unsymmetrical (A)
- Electrophilic addition to alkenes - Unsymmetrical alkenes + HBr
- Electrophilic addition to alkenes can produce stereoisomers
- Electrophilic addition to alkenes is stereospecific
- Electrophilic addition to butadiene
- Electrophilic aromatic substitution - Friedel-Crafts acylation
- Electrophilic aromatic substitution - Friedel-Crafts alkylation
- Electrophilic aromatic substitution - Nitration of benzene
- Electrophilic aromatic substitution - Sulfonation of benzene
- Elimination - E1
- Elimination - E1cB
- Elimination - E2 Regioselective Elimination from Menthyl Chlorides to Menthenes A
- Elimination - E2 stereoselective for E alkenes
- Elimination - E2 Stereospecific from diastereoisomers
- Elimination - E2 to form cyclohexadiene
- Elimination - E2 Regioselective Elimination from Menthyl Chlorides to Menthenes B
- Enamine Acylation - Reaction With An Acid Chloride
- Enamine formation
- Enantiomeric auxillary-controlled enantioselective syn Aldol reaction
- Enantioselective Addition Organolithium Step 2
- Enantioselective Addition Organolithium Step 1
- Enantioselective Addition Organolithium-Sparteine
- Enantioselective Conjugate Addition - Oppolzer's sultam auxiliary
- Enantioselective Cyclopropanation - Asymmetric Simmons-Smith reaction
- Enantioselective Enolate Alkylation - Evans - Benzylation of chiral enolates
- Enantioselective Enolate Alkylation - Evans - Methylation of chiral enolates
- Enantioselective hydroboration of cyclopentadiene Ipc-borane
- Enantioselective Hydrogenation of Ketones - Ru(II) mechanism
- Enantioselective Hydrogenation of Ketones Ruthenium complexes- Noyori
- Enantioselective intermolecular aldol dimerisation catalysed by proline
- Enantioselective Intramolecular Aldol promoted by Proline
- Enantioselective Ketone Reduction Chiral Reagent - Alpine Borane
- Enantioselective Organocatalytic Friedel-Crafts Alkylation
- Enantioselective Reduction of Ketones with BINAL-H
- Endiadric Acid A - Cycloaddition reactions in Nature
- Endiandric Acid Cascade
- Endiandric Acid D - Electrocyclic Reactions in Nature
- Endiandric Acid E - Electrocyclic Reactions in Nature
- Endiandric Acid Precursor - Electrocyclic Reactions in Nature
- Endo-trig reactions
- Endo-trig reactions (5-endo-trig orbital overlap)
- Endo-trig reactions (5-endo-trig)
- Endo-trig reactions (6-endo-trig)
- Enolate direct attack on the carbonyl group
- Enolate reaction with bromine - bromination of ketone
- Epoxidation of alkenes to form epoxides
- Epoxide Opening to Give Chair Conformation
- Ethylene and Bromine
- Evans auxilary-controlled enantioselective Diels-Alder reaction
- Evans auxilary-controlled enantioselective syn Aldol reaction
- Fischer indole synthesis - [3,3]-sigmatropic rearrangement
- Fluorination of Medicinal Compounds - The Halex Reaction
- Formation of bromoform
- Formation of Diazonium Salt - Diazotization
- Formation of Nitrosonium Ion
- Fragmentation - Beckmann fragmentation
- Fragmentation - Bond polarization (Carbonyl Sink)
- Fragmentation - Bond polarization (Hydroxy Sink)
- Fragmentation - Fragmentation of diastereoisomers (cis-decalin I)
- Fragmentation - Fragmentation of diastereoisomers (cis-decalin II)
- Fragmentation - Fragmentation of diastereoisomers (No ring fragmentation)
- Fragmentation - Fragmentation of diastereoisomers (Trans-decalin I)
- Fragmentation - Fragmentations are controlled by stereochemistry
- Fragmentation - Fragmentations are controlled by stereochemistry (Cis isomer)
- Fragmentation - Fragmentations are controlled by stereochemistry (Trans isomer - Less severe interactions)
- Fragmentation - Fragmentations are controlled by stereochemistry (Trans isomer - Severe interactions)
- Fragmentation - Fragmentations are controlled by stereochemistry (Trans isomer)
- Fragmentation - Juvenile hormone synthesis
- Fragmentation - Ring expansion
- Fragmentation of diastereoisomers
- Fragmentations - Bond polarization
- Furan Hydrolysis
- Glycol Oxidative Cleavage Lead Tetraacetate
- Hantzsch pyridine synthesis Step 1: Knoevenagel Condensation between the ?-ketoester and aldehyde
- Hantzsch pyridine synthesis Step 2: Formation of the ester enamine
- Hantzsch pyridine synthesis Step 3: Formation of the dihydropyridine
- Hantzsch pyridine synthesis - overview
- Hemiacetal formation
- How conjugation changes the reactivity of carbonyl groups
- Hydrate Formation from Formaldehyde(Methanal)
- Hydrazone formation
- Hydroformylation The OXO reaction
- Hydrogen Bromide Radical Addition to Isobutene
- Hydrogen Bromide Radical Addition to Isobutene-Termination Steps
- Imidazolidinone Catalysis: Asymmetric Alkylation of Indole
- Imine formation
- Indole - Mannich Reaction And Substitution By Elimination
- Indole Alkylation - Intramolecular Friedel-Crafts
- Industrial Synthesis of Citral
- Intramolecular aldol reactions
- Intramolecular aldol reactions (Eight-membered ring formation)
- Intramolecular aldol reactions (Enols of nona-2,8-dione)
- Intramolecular aldol reactions (Six-membered ring formation)
- Intramolecular carbonyl ene reaction - Asymmetric synthesis
- Intramolecular Diels-Alder - 1,3,9-decatrien-8-one
- Intramolecular Diels-Alder - Regioselectivity reversal
- Intramolecular Diels-Alder reaction (E)-3-Methyldeca-1,3,9-triene
- Intramolecular nucleophilic substitution on an enamine intermediate
- Intramolecular Radical Cyclisation Reaction
- Introduction to Animated Molecular Orbitals
- Introduction to Pericyclic Reactions
- Iodoheptene Radical Cyclisation Endo
- Iodoheptene Radical Cyclisation Exo
- Iodohexene Radical Cyclisation Endo
- Iodohexene Radical Cyclisation Exo
- Ireland-Claisen rearrangement [3,3] Sigmatropic
- Jones Oxidation: Alcohol to Carbonyl
- Julia Olefination
- Knoevenagel condensation
- Knorr Pyrrole Synthesis
- Lithium enolates in aldol reactions
- Loss of the carbanion - Base
- Mannich reaction
- Mannich reaction (Addition of imine salt to ketone)
- Mannich reaction (Enone formation)
- Mannich reaction (Imine formation)
- Meyers Asymmetric Alkylation - Asymmetric Synthesis
- Mitsunobu Reaction Overview
- Mitsunobu Reaction Stage 1
- Mitsunobu Reaction Stage 2
- Mitsunobu Reaction Stage 3
- Mitsunobu Reaction Stage 4
- Molecules with a Plane of Symmetry - Feist's Acid
- Nazarov Cyclization - Electrocyclisation of a dienyl cation
- Neighbouring group participation: alpha-lactone formation
- Nitrile Oxide Formation from Nitroalkanes
- Nitrile Oxide Synthesis Via Oxime
- Norcaradiene Ring Opening
- Nucleophilic attack by hydride
- Nucleophilic Conjugate Substitution - The SN2? Mechanism
- Nucleophilic Substitution at Saturated Carbon: SN2 Reactions
- Nucleophilic substitution via SN1 and SN2
- Olefin Metathesis Synthesis of an Unsaturated Pyrrole
- Olefin Metathesis Synthesis of an Unsaturated 12-membered Benzofused Ring
- Organic Chemistry Animations Introduction
- Organo-main-group chemistry (Boron) - Crotyl boranes react stereospecifically
- Organo-main-group chemistry (Boron) - Crotyl boranes react stereospecifically (E-crotyl boronate)
- Organo-main-group chemistry (Boron) - Crotyl boranes react stereospecifically (Z-crotyl boronate)
- Organo-main-group chemistry (Boron) - Hydroboration
- Organo-main-group chemistry (Boron) - Hydroboration (Addition of boron hydride to alkenes)
- Organo-main-group chemistry (Boron) - Hydroboration (Oxidation)
- Organocatalysis - Proline-Catalysed Aldol Reaction
- Organometallics - Addition to a carbonyl group (Grignard reagent)
- Organometallics - Addition to a carbonyl group (Organolithium reagent)
- Organometallics - Addition to the carbonyl group
- Organopalladium Chemistry - Butenolide Formation From Carbonylation Of A Vinyl Bromide
- Organopalladium Chemistry - Palladium-catalysed nucleophilic allylic substitution of functionalised compounds
- Organopalladium Chemistry - The Carbonylative Kosugi-Migita-Stille Coupling Reaction
- Organopalladium Chemistry - The Kosugi-Migita-Stille Reaction
- Organopalladium Chemistry - The Mizoroki-Heck Reaction
- Organopalladium Chemistry - The Suzuki Reaction
- Oxidation of dihydropyridine by DDQ
- Oxime formation
- Ozonolysis
- Paal-Knorr Pyrrole Synthesis - Enamine Intermediate
- Periodate Cleavage of 1,2-Diols
- Pinacol Coupling
- Pummerer rearrangement - Sulfur-stabilized cations
- Pyridine - Nucleophilic Catalyst
- Pyridine - Nucleophilic Substitution
- Pyridine N-Oxide - Cleavage of N-oxide
- Pyridine N-Oxide - Nucleophilic Substitution (Addition-Elimination)
- Pyridine N-Oxide - Remote Oxidation And Rearrangement
- Pyridine N-Oxide-structure
- Pyridine-structure
- Pyridine-Tautomerism of Hydroxy Pyridine
- Pyrone Decarboxylation
- Pyrrole decarboxylation
- Pyrrole Formation Paal-Knorr pyrrole synthesis Hemiaminal intermediate
- Pyrrole-Mannich-Electrophilic Substitution
- Pyrrole-Mannich-Formation of an iminium Ion
- Pyrrole-structure
- Pyrrole-The Mannich Reaction Overview
- Pyrrole-The Vilsmeier Reaction
- Pyrrole-Vilsmeier-Formation of an iminium cation
- Pyrrole-Vilsmeier-Hydrolysis of an Iminium Salt
- Pyrrole-Vilsmeier-Nucleophilic Substitution
- Radical Addition of an "R" Group to Acrylonitrile
- Radical Copolymerization
- Radical Cyclisations Summary
- Radical Substitution of Br by H - Removing functional groups
- Radicals Chlorination of alkanes
- Re and Si Faces Isobutyraldehyde and examine
- Re and Si faces Propanal and enamine
- Reactions of carbenes (Alkene insertion - Singlet v Triplet)
- Reactions of carbenes (Alkene insertion - Triplet carbene)
- Reactions of carbenes (C-H bond insertion)
- Reactions of carbenes (O-H bond insertion)
- Rearrangements - Aziridinium opening -?Hydroxide nucleophile
- Rearrangements - Aziridinium opening - water nucleophile
- Rearrangements - Baeyer-Villiger
- Rearrangements - Beckmann rearrangement
- Rearrangements - Benzilic Acid
- Rearrangements - Diastereoisomer 1
- Rearrangements - Diastereoisomer 2
- Rearrangements - Diastereoisomer 3
- Rearrangements - Diastereoisomer 4
- Rearrangements - Favorskii rearrangement
- Rearrangements - Neighbouring Group Migration
- Rearrangements - Payne rearrangement
- Rearrangements - Pinacol
- Rearrangements - Retention of stereochemistry can indicate neighbouring group participation
- Rearrangements - Ring expansion means rearrangement
- Rearrangements - Semipinacol rearrangements of diazonium salts
- Rearrangements - The direction of rearrangement depends on the nucleophile
- Rearrangements - Wagner-Meerwein rearrangement
- Rearrangements - Which Group Migrates?
- Regioselectivity in Diels-Alder reactions
- Regioselectivity in Diels-Alder reactions
- Regioselectivity in Diels-Alder reactions Reaction of 1,1-dimethylbutadiene and methyl acrylate
- Regioselectivity in Diels-Alder reactions Reaction of 2-methoxybuta-1,3-diene and acrylonitrile
- Retro-Ene reaction Decomposition of 1-pentene
- Robinson annelation
- Robinson annelation (Base-catalysed enolization)
- Robinson annelation (Step 1 Conjugate addition)
- Robinson annelation (Step 2: Intramolecular aldol reaction)
- Robinson annelation (Step 3: E1cB dehydration)
- SN2 Reaction: 2o Benzyl Chloride with HS -
- SN2 Reaction: Allyl Chloride with HS -
- SN2 Reaction: Benzyl Chloride with HS -
- Sch?llkopf Bis-lactim Amino Acid Synthesis
- Second Bromination Step - Base
- Sharpless Asymmetric Epoxidation of Allylic Alcohols
- Sigmatropic hydrogen shifts [1,7]H sigmatropic shift
- Silicon alpha anion stabilisation
- Spacefill view of Hydrophosphonylation reaction
- Stability and structure of carbocations
- Stereochemistry Achiral Diastereoisomers
- Stereochemistry BINAP C2 Axis of Symmetry
- Stereochemistry Chiral Allenes Without Stereogenic Centres
- Stereochemistry Non-superimposable Spiro Amides
- Stereochemistry Symmetry of Epoxide Diastereoisomers
- Stereochemistry Chiral or achiral
- Stereochemistry Diamides Showing a Centre of Symmetry
- Stereochemistry Home Page
- Stereochemistry of Cyanohydrins - Achiral cyanohydrins
- Stereoselective Axial Alkylation of Cyclohexanone via Enamine
- Stereoselective Cyclopropanation of an Alkene by a Carbenoid (CH2I2-Zn)
- Stereoselective Reaction of Acylic Alkenes Enolate alkylation - Allylic strain
- Stereoselective Wittig Reaction-Overview
- Stereospecific Cheleotropic Reactions with Sulfur Dioxide
- Structure and Conformation of Decalins
- Substrate structure controls substitution mechanism SN1 or SN2
- Sulfonium ylids form epoxides from ketones
- Sulfoxide elimination-oxidation to enones
- Sulfoxonium Ylids make Cyclopropanes
- Swern Oxidation
- Swern Oxidation Stage 1 Activation of DMSO
- Swern Oxidation Stage 2 Substitution at chlorosulfonium ion
- Swern Oxidation Stage 3 Elimination of Me2S
- Syn-dihydroxylation of alkenes with osmium tetroxide
- Synthesis of an intermediate for Crixivan by the Ritter reaction
- Synthesis of Pyrazole
- Synthesis of Pyridazine
- Synthesis of Pyrimidine
- Tartaric acid - Newman projections
- Tetrazole formation by cycloaddition
- The Woodward Hoffman description of the Diels-Alder reaction
- Thiazole Formation - Selective Reactions
- Thiazole Formation - Thioamides
- Thiophene formation - Activation of Lawesson's reagent
- Thiophene formation - Lawesson's reagent
- Thiophene Formation - Thionation of a Ketone
- Thiophene ring formation
- Third Bromination Step - Base
- Tiffeneau-Demjanov Rearrangement
- Trapping reactive intermediates by cycloadditions
- Trimethylenemethane Palladium Catalysed Cycloaddition - Overview
- Trimethylenemethane Palladium Catalysed Cycloadditions Step 1
- Trimethylenemethane Palladium Catalysed Cycloadditions Step 2
- Unstabilised Phosphonium Ylid Formation Wittig Reaction
- Unsymmetrical bromonium ions open regioselectively
- Vinyl silanes offer a regio- and stereoselective route to alkenes
- Vinyl silanes offer a regio- and stereoselective route to alkenes - E vinyl silane
- Vinyl silanes offer a regio- and stereoselective route to alkenes - Z vinyl silane
- Wittig reaction
- Wittig reaction - Ylid reaction with ketone
- Wittig reaction (Phosphonium Ylid formation)
- Wolff-Kishner Reduction: Carbonyl to Alkane
- Z-Selective Wittig Reaction
Solution:
- [1,5]-H sigmatropic shift
- [2,3]-Sigmatropic rearrangements
- [2+2] Ketene Cycloaddition
- [4+3] Oxyallyl Cycloaddition
- [4+6] Thermal Cycloaddition
- 1,2,3-Triazole formation by cycloaddition
- 1,3-Dipolar Cycloaddition Formation of a Simple Isoxazole
- 1,3-Dipolar cycloadditions - nitrone/alkene
- 2-Hydroxypyridine-Tautomerism
- 4-Hydroxypyridine-Tautomerism
- 8-Phenylmenthol auxiliary-controlled Diels-Alder reaction
- A simple SN2 reaction
- Acetal formation
- Achiral compounds with more than one stereogenic centre - Meso
- Acid chloride formation - Phosphorus Pentachloride
- Acid Chloride Formation - Thionyl Chloride
- Acid-Catalysed Bromination of Ketones
- Acid-catalysed ester hydrolysis and transesterification
- Acylation at carbon Claisen ester condensation
- Addition to Aromatic Rings Facilitated by Two Nitro Groups
- Addition-Elimination Substitution on Aromatic Chloride Facilitated by a para-nitro group
- Aldol Reaction - Enolisation and formation of anti product
- Aldol Reaction - Enolisation and formation of syn product
- Aldol Reaction - Simple Diastereoselectivity Cis gives Syn
- Aldol Reaction - Simple Diastereoselectivity Trans give Anti
- Aldol reaction of cyclopentanone
- Aldol reaction of cyclopentanone (Step 1)
- Aldol reaction of cyclopentanone (Step 2)
- Aldol reaction of cyclopentanone (Step 3)
- Allylic Bromination of Cyclohexene
- Allylic Bromination of Isobutene
- Allylic Oxidation with Selenium Dioxide
- Allylic Strain Epoxidation of E-Allyl Silanes
- Allylic Strain Epoxidation of Z-Allyl Silanes
- Amide formation
- Aromatic Heterocycles Overview
- Aromatic Substitution via Benzyne Intermediate
- Asymmetic Alkylation of SAMP Hydrazone
- Asymmetric Carbonyl Ene Reaction - Controlled by Chiral Phosphoramide
- Asymmetric Hydrophosphonylation of imine with chiral Br?nsted acid-phosphate catalyst
- Asymmetric intermolecular aldol catalysed by proline
- Asymmetric intermolecular aldol catalysed by proline - Hydroxyacetone enamine and aldehyde
- Asymmetric Methylation of Carbonyl with Dimethyl Zinc
- Asymmetric reduction of carbonyl with CBS reagent
- Asymmetric Sulfoxidation
- Asymmetric Sulfoxidation Detail
- Azo-dye Synthesis
- Baldwin's Rules Classes of cyclization
- Bamford-Stevens reaction
- Bamford-Stevens reaction Step 1
- Bamford-Stevens reaction - decomposition of diazo intermediate
- Base catalysed enolate formation (Enolization)
- Base-Catalysed Bromination of Ketones - Summary
- Base-catalysed enolization
- Baylis-Hillman Reaction
- Benzyne formation - Diazotization-decarboxylation of Anthranilic acid (2-aminobenzoic acid)
- Beta-Keto Sulfoxide reduction chelation
- Beta-Keto Sulfoxide reduction-intramolecular delivery
- Beta-Keto Sulfoxide reduction-stereodivergent
- Brief history of ChemTube3D
- Bromine and pent-2-ene
- Butane Newman Projections
- Carbenes - Formation
- Carbenes - Formation (from diazocarbonyl compounds)
- Carbenes - Formation (Thermal decomposition via hydrazone)
- Carbenes - Formation (via alpha elimination)
- Carbenes - Methylation of carboxylic acid using diazomethane
- Carbenes - Photolysis of diazomethane to produce a carbene
- Carbenes - Reactions
- Carbenes (Alkene insertion - Singlet carbene)
- Chiral BINAP Without Stereogenic Centres
- Chiral Cyanohydrins - Configuration
- Chiral molecules R or S
- Chiral molecules II R or S
- Chiral molecules III R or S
- Cis-Decalin conformations
- Claisen rearrangement - Sigmatropic rearrangement
- Claisen rearrangement on an aromatic system - [3,3]-Sigmatropic rearrangement
- Classes of cyclization (3-exo-tet)
- Classes of cyclization (5-exo-trig)
- Classes of cyclization (6-endo-dig)
- Conformation vs Configuration
- Conformational Analysis - Pea Moth Pheromone
- Conformations of Butane
- Conformations of Butane - energetics
- Conformations of cyclohexane
- Conformations of ethane - Newman projection
- Conjugate Addition of Diethylamine to an Unsaturated Ester
- Conjugate Addition of Diethylamine to an Unsaturated Nitrile (Acrylonitrile)
- Conjugate Addition of Enamine to Unsaturated Imine
- Conjugate addition of enolates
- Conjugate addition of enolates - Overview
- Conjugate Addition of MeSH to an Unsaturated Aldehyde
- Conjugate addition of peroxide to form epoxides (E-enone)
- Conjugate addition of peroxide to form epoxides (Z-enone)
- Conjugate Addition Reactions
- Cyanohydrin formation
- Cyanohydrin formation (Stereochemistry)
- Cyclic acetal formation
- Diastereoisomers are stereoisomers that are not enantiomers
- Diastereoselective Ketone Reduction Chelation zinc borohydride
- Diastereoselective ketone reduction Felkin-Anh Transition State
- Diastereoselectivity Chelate Cram Addition
- Diels-Alder - Stereochemistry of the dienophile
- Diels-Alder reaction - endo vs exo
- Diels-Alder - 2,3-Dimethylbutadiene and Acrolein(propenal)
- Diels-Alder - Endo and Exo adducts
- Diels-Alder - endo rule - acyclic examples
- Diels-Alder - endo vs exo Methyl vinyl ketone
- Diels-Alder - Quinone as Dienophile - Steroid Framework
- Diels-Alder - s-cis conformation
- Diels-Alder - Stereochemistry of the diene Summary
- Diels-Alder - Stereochemistry of the dienophile
- Diels-Alder - Stereochemistry of the E,E-diene (trans-trans)
- Diels-Alder - Stereochemistry of the Z,E-diene (cis-trans)
- Diels-Alder - Stereochemistry of the Z,Z-diene (cis-cis)
- Diels-Alder orbital explanation for the endo rule
- Diels-Alder reaction - Working out which product is endo
- Diels-Alder reaction Introduction - Identifying a Diels-Alder Reaction
- Diels-Alder reaction Overview
- Diels-Alder: E,E (trans, trans) diene - Stereochemistry of a phenyl diene
- Diels-Alder: E,Z (trans, cis) Diene - Stereochemistry Of The Diene
- Diels-Alder: Z,Z (cis,cis) diene - Stereochemistry of the diene
- Dimedone synthesis
- Direct conjugate addition with enols
- Double bond geometry - Conjugate addition of peroxide to form epoxides
- Double bond geometry - Stereospecific Peterson reaction
- Double bond geometry - Stereospecific Peterson reaction (Acid elimination - Diastereoisomer 1)
- Double bond geometry - Stereospecific Peterson reaction (Acid elimination - Diastereoisomer 2)
- Double bond geometry - Stereospecific Peterson reaction (Base elimination - Diastereoisomer 1)
- Double bond geometry - The Peterson reaction
- E-Selective Wittig Reaction
- Electrocyclic - Conrotatory ring closure/opening
- Electrocyclic - Disrotatory ring closure/opening
- Electrocyclic reactions are stereospecific
- Electrophilic addition to alkenes - Symmetrical and Unsymmetrical (A)
- Electrophilic addition to alkenes - Unsymmetrical alkenes + HBr
- Electrophilic addition to alkenes can produce stereoisomers
- Electrophilic addition to alkenes is stereospecific
- Electrophilic addition to butadiene
- Electrophilic aromatic substitution - Friedel-Crafts acylation
- Electrophilic aromatic substitution - Friedel-Crafts alkylation
- Electrophilic aromatic substitution - Nitration of benzene
- Electrophilic aromatic substitution - Sulfonation of benzene
- Elimination - E1
- Elimination - E1cB
- Elimination - E2 Regioselective Elimination from Menthyl Chlorides to Menthenes A
- Elimination - E2 stereoselective for E alkenes
- Elimination - E2 Stereospecific from diastereoisomers
- Elimination - E2 to form cyclohexadiene
- Elimination - E2 Regioselective Elimination from Menthyl Chlorides to Menthenes B
- Enamine Acylation - Reaction With An Acid Chloride
- Enamine formation
- Enantiomeric auxillary-controlled enantioselective syn Aldol reaction
- Enantioselective Addition Organolithium Step 2
- Enantioselective Addition Organolithium Step 1
- Enantioselective Addition Organolithium-Sparteine
- Enantioselective Conjugate Addition - Oppolzer's sultam auxiliary
- Enantioselective Cyclopropanation - Asymmetric Simmons-Smith reaction
- Enantioselective Enolate Alkylation - Evans - Benzylation of chiral enolates
- Enantioselective Enolate Alkylation - Evans - Methylation of chiral enolates
- Enantioselective hydroboration of cyclopentadiene Ipc-borane
- Enantioselective Hydrogenation of Ketones - Ru(II) mechanism
- Enantioselective Hydrogenation of Ketones Ruthenium complexes- Noyori
- Enantioselective intermolecular aldol dimerisation catalysed by proline
- Enantioselective Intramolecular Aldol promoted by Proline
- Enantioselective Ketone Reduction Chiral Reagent - Alpine Borane
- Enantioselective Organocatalytic Friedel-Crafts Alkylation
- Enantioselective Reduction of Ketones with BINAL-H
- Endiadric Acid A - Cycloaddition reactions in Nature
- Endiandric Acid Cascade
- Endiandric Acid D - Electrocyclic Reactions in Nature
- Endiandric Acid E - Electrocyclic Reactions in Nature
- Endiandric Acid Precursor - Electrocyclic Reactions in Nature
- Endo-trig reactions
- Endo-trig reactions (5-endo-trig orbital overlap)
- Endo-trig reactions (5-endo-trig)
- Endo-trig reactions (6-endo-trig)
- Enolate direct attack on the carbonyl group
- Enolate reaction with bromine - bromination of ketone
- Epoxidation of alkenes to form epoxides
- Epoxide Opening to Give Chair Conformation
- Ethylene and Bromine
- Evans auxilary-controlled enantioselective Diels-Alder reaction
- Evans auxilary-controlled enantioselective syn Aldol reaction
- Fischer indole synthesis - [3,3]-sigmatropic rearrangement
- Fluorination of Medicinal Compounds - The Halex Reaction
- Formation of bromoform
- Formation of Diazonium Salt - Diazotization
- Formation of Nitrosonium Ion
- Fragmentation - Beckmann fragmentation
- Fragmentation - Bond polarization (Carbonyl Sink)
- Fragmentation - Bond polarization (Hydroxy Sink)
- Fragmentation - Fragmentation of diastereoisomers (cis-decalin I)
- Fragmentation - Fragmentation of diastereoisomers (cis-decalin II)
- Fragmentation - Fragmentation of diastereoisomers (No ring fragmentation)
- Fragmentation - Fragmentation of diastereoisomers (Trans-decalin I)
- Fragmentation - Fragmentations are controlled by stereochemistry
- Fragmentation - Fragmentations are controlled by stereochemistry (Cis isomer)
- Fragmentation - Fragmentations are controlled by stereochemistry (Trans isomer - Less severe interactions)
- Fragmentation - Fragmentations are controlled by stereochemistry (Trans isomer - Severe interactions)
- Fragmentation - Fragmentations are controlled by stereochemistry (Trans isomer)
- Fragmentation - Juvenile hormone synthesis
- Fragmentation - Ring expansion
- Fragmentation of diastereoisomers
- Fragmentations - Bond polarization
- Furan Hydrolysis
- Glycol Oxidative Cleavage Lead Tetraacetate
- Hantzsch pyridine synthesis Step 1: Knoevenagel Condensation between the ?-ketoester and aldehyde
- Hantzsch pyridine synthesis Step 2: Formation of the ester enamine
- Hantzsch pyridine synthesis Step 3: Formation of the dihydropyridine
- Hantzsch pyridine synthesis - overview
- Hemiacetal formation
- How conjugation changes the reactivity of carbonyl groups
- Hydrate Formation from Formaldehyde(Methanal)
- Hydrazone formation
- Hydroformylation The OXO reaction
- Hydrogen Bromide Radical Addition to Isobutene
- Hydrogen Bromide Radical Addition to Isobutene-Termination Steps
- Imidazolidinone Catalysis: Asymmetric Alkylation of Indole
- Imine formation
- Indole - Mannich Reaction And Substitution By Elimination
- Indole Alkylation - Intramolecular Friedel-Crafts
- Industrial Synthesis of Citral
- Intramolecular aldol reactions
- Intramolecular aldol reactions (Eight-membered ring formation)
- Intramolecular aldol reactions (Enols of nona-2,8-dione)
- Intramolecular aldol reactions (Six-membered ring formation)
- Intramolecular carbonyl ene reaction - Asymmetric synthesis
- Intramolecular Diels-Alder - 1,3,9-decatrien-8-one
- Intramolecular Diels-Alder - Regioselectivity reversal
- Intramolecular Diels-Alder reaction (E)-3-Methyldeca-1,3,9-triene
- Intramolecular nucleophilic substitution on an enamine intermediate
- Intramolecular Radical Cyclisation Reaction
- Introduction to Animated Molecular Orbitals
- Introduction to Pericyclic Reactions
- Iodoheptene Radical Cyclisation Endo
- Iodoheptene Radical Cyclisation Exo
- Iodohexene Radical Cyclisation Endo
- Iodohexene Radical Cyclisation Exo
- Ireland-Claisen rearrangement [3,3] Sigmatropic
- Jones Oxidation: Alcohol to Carbonyl
- Julia Olefination
- Knoevenagel condensation
- Knorr Pyrrole Synthesis
- Lithium enolates in aldol reactions
- Loss of the carbanion - Base
- Mannich reaction
- Mannich reaction (Addition of imine salt to ketone)
- Mannich reaction (Enone formation)
- Mannich reaction (Imine formation)
- Meyers Asymmetric Alkylation - Asymmetric Synthesis
- Mitsunobu Reaction Overview
- Mitsunobu Reaction Stage 1
- Mitsunobu Reaction Stage 2
- Mitsunobu Reaction Stage 3
- Mitsunobu Reaction Stage 4
- Molecules with a Plane of Symmetry - Feist's Acid
- Nazarov Cyclization - Electrocyclisation of a dienyl cation
- Neighbouring group participation: alpha-lactone formation
- Nitrile Oxide Formation from Nitroalkanes
- Nitrile Oxide Synthesis Via Oxime
- Norcaradiene Ring Opening
- Nucleophilic attack by hydride
- Nucleophilic Conjugate Substitution - The SN2? Mechanism
- Nucleophilic Substitution at Saturated Carbon: SN2 Reactions
- Nucleophilic substitution via SN1 and SN2
- Olefin Metathesis Synthesis of an Unsaturated Pyrrole
- Olefin Metathesis Synthesis of an Unsaturated 12-membered Benzofused Ring
- Organic Chemistry Animations Introduction
- Organo-main-group chemistry (Boron) - Crotyl boranes react stereospecifically
- Organo-main-group chemistry (Boron) - Crotyl boranes react stereospecifically (E-crotyl boronate)
- Organo-main-group chemistry (Boron) - Crotyl boranes react stereospecifically (Z-crotyl boronate)
- Organo-main-group chemistry (Boron) - Hydroboration
- Organo-main-group chemistry (Boron) - Hydroboration (Addition of boron hydride to alkenes)
- Organo-main-group chemistry (Boron) - Hydroboration (Oxidation)
- Organocatalysis - Proline-Catalysed Aldol Reaction
- Organometallics - Addition to a carbonyl group (Grignard reagent)
- Organometallics - Addition to a carbonyl group (Organolithium reagent)
- Organometallics - Addition to the carbonyl group
- Organopalladium Chemistry - Butenolide Formation From Carbonylation Of A Vinyl Bromide
- Organopalladium Chemistry - Palladium-catalysed nucleophilic allylic substitution of functionalised compounds
- Organopalladium Chemistry - The Carbonylative Kosugi-Migita-Stille Coupling Reaction
- Organopalladium Chemistry - The Kosugi-Migita-Stille Reaction
- Organopalladium Chemistry - The Mizoroki-Heck Reaction
- Organopalladium Chemistry - The Suzuki Reaction
- Oxidation of dihydropyridine by DDQ
- Oxime formation
- Ozonolysis
- Paal-Knorr Pyrrole Synthesis - Enamine Intermediate
- Periodate Cleavage of 1,2-Diols
- Pinacol Coupling
- Pummerer rearrangement - Sulfur-stabilized cations
- Pyridine - Nucleophilic Catalyst
- Pyridine - Nucleophilic Substitution
- Pyridine N-Oxide - Cleavage of N-oxide
- Pyridine N-Oxide - Nucleophilic Substitution (Addition-Elimination)
- Pyridine N-Oxide - Remote Oxidation And Rearrangement
- Pyridine N-Oxide-structure
- Pyridine-structure
- Pyridine-Tautomerism of Hydroxy Pyridine
- Pyrone Decarboxylation
- Pyrrole decarboxylation
- Pyrrole Formation Paal-Knorr pyrrole synthesis Hemiaminal intermediate
- Pyrrole-Mannich-Electrophilic Substitution
- Pyrrole-Mannich-Formation of an iminium Ion
- Pyrrole-structure
- Pyrrole-The Mannich Reaction Overview
- Pyrrole-The Vilsmeier Reaction
- Pyrrole-Vilsmeier-Formation of an iminium cation
- Pyrrole-Vilsmeier-Hydrolysis of an Iminium Salt
- Pyrrole-Vilsmeier-Nucleophilic Substitution
- Radical Addition of an "R" Group to Acrylonitrile
- Radical Copolymerization
- Radical Cyclisations Summary
- Radical Substitution of Br by H - Removing functional groups
- Radicals Chlorination of alkanes
- Re and Si Faces Isobutyraldehyde and examine
- Re and Si faces Propanal and enamine
- Reactions of carbenes (Alkene insertion - Singlet v Triplet)
- Reactions of carbenes (Alkene insertion - Triplet carbene)
- Reactions of carbenes (C-H bond insertion)
- Reactions of carbenes (O-H bond insertion)
- Rearrangements - Aziridinium opening -?Hydroxide nucleophile
- Rearrangements - Aziridinium opening - water nucleophile
- Rearrangements - Baeyer-Villiger
- Rearrangements - Beckmann rearrangement
- Rearrangements - Benzilic Acid
- Rearrangements - Diastereoisomer 1
- Rearrangements - Diastereoisomer 2
- Rearrangements - Diastereoisomer 3
- Rearrangements - Diastereoisomer 4
- Rearrangements - Favorskii rearrangement
- Rearrangements - Neighbouring Group Migration
- Rearrangements - Payne rearrangement
- Rearrangements - Pinacol
- Rearrangements - Retention of stereochemistry can indicate neighbouring group participation
- Rearrangements - Ring expansion means rearrangement
- Rearrangements - Semipinacol rearrangements of diazonium salts
- Rearrangements - The direction of rearrangement depends on the nucleophile
- Rearrangements - Wagner-Meerwein rearrangement
- Rearrangements - Which Group Migrates?
- Regioselectivity in Diels-Alder reactions
- Regioselectivity in Diels-Alder reactions
- Regioselectivity in Diels-Alder reactions Reaction of 1,1-dimethylbutadiene and methyl acrylate
- Regioselectivity in Diels-Alder reactions Reaction of 2-methoxybuta-1,3-diene and acrylonitrile
- Retro-Ene reaction Decomposition of 1-pentene
- Robinson annelation
- Robinson annelation (Base-catalysed enolization)
- Robinson annelation (Step 1 Conjugate addition)
- Robinson annelation (Step 2: Intramolecular aldol reaction)
- Robinson annelation (Step 3: E1cB dehydration)
- SN2 Reaction: 2o Benzyl Chloride with HS -
- SN2 Reaction: Allyl Chloride with HS -
- SN2 Reaction: Benzyl Chloride with HS -
- Sch?llkopf Bis-lactim Amino Acid Synthesis
- Second Bromination Step - Base
- Sharpless Asymmetric Epoxidation of Allylic Alcohols
- Sigmatropic hydrogen shifts [1,7]H sigmatropic shift
- Silicon alpha anion stabilisation
- Spacefill view of Hydrophosphonylation reaction
- Stability and structure of carbocations
- Stereochemistry Achiral Diastereoisomers
- Stereochemistry BINAP C2 Axis of Symmetry
- Stereochemistry Chiral Allenes Without Stereogenic Centres
- Stereochemistry Non-superimposable Spiro Amides
- Stereochemistry Symmetry of Epoxide Diastereoisomers
- Stereochemistry Chiral or achiral
- Stereochemistry Diamides Showing a Centre of Symmetry
- Stereochemistry Home Page
- Stereochemistry of Cyanohydrins - Achiral cyanohydrins
- Stereoselective Axial Alkylation of Cyclohexanone via Enamine
- Stereoselective Cyclopropanation of an Alkene by a Carbenoid (CH2I2-Zn)
- Stereoselective Reaction of Acylic Alkenes Enolate alkylation - Allylic strain
- Stereoselective Wittig Reaction-Overview
- Stereospecific Cheleotropic Reactions with Sulfur Dioxide
- Structure and Conformation of Decalins
- Substrate structure controls substitution mechanism SN1 or SN2
- Sulfonium ylids form epoxides from ketones
- Sulfoxide elimination-oxidation to enones
- Sulfoxonium Ylids make Cyclopropanes
- Swern Oxidation
- Swern Oxidation Stage 1 Activation of DMSO
- Swern Oxidation Stage 2 Substitution at chlorosulfonium ion
- Swern Oxidation Stage 3 Elimination of Me2S
- Syn-dihydroxylation of alkenes with osmium tetroxide
- Synthesis of an intermediate for Crixivan by the Ritter reaction
- Synthesis of Pyrazole
- Synthesis of Pyridazine
- Synthesis of Pyrimidine
- Tartaric acid - Newman projections
- Tetrazole formation by cycloaddition
- The Woodward Hoffman description of the Diels-Alder reaction
- Thiazole Formation - Selective Reactions
- Thiazole Formation - Thioamides
- Thiophene formation - Activation of Lawesson's reagent
- Thiophene formation - Lawesson's reagent
- Thiophene Formation - Thionation of a Ketone
- Thiophene ring formation
- Third Bromination Step - Base
- Tiffeneau-Demjanov Rearrangement
- Trapping reactive intermediates by cycloadditions
- Trimethylenemethane Palladium Catalysed Cycloaddition - Overview
- Trimethylenemethane Palladium Catalysed Cycloadditions Step 1
- Trimethylenemethane Palladium Catalysed Cycloadditions Step 2
- Unstabilised Phosphonium Ylid Formation Wittig Reaction
- Unsymmetrical bromonium ions open regioselectively
- Vinyl silanes offer a regio- and stereoselective route to alkenes
- Vinyl silanes offer a regio- and stereoselective route to alkenes - E vinyl silane
- Vinyl silanes offer a regio- and stereoselective route to alkenes - Z vinyl silane
- Wittig reaction
- Wittig reaction - Ylid reaction with ketone
- Wittig reaction (Phosphonium Ylid formation)
- Wolff-Kishner Reduction: Carbonyl to Alkane
- Z-Selective Wittig Reaction
problem_type: 11/11 (loop 0/0)
Problem Template: _problem_polymers
Draw the following polymer structures:
- Bisphenol A (polycarbonate)
- Kapton
- Natural Rubber
- Nylon 6,6
- PAMAM Dendrimer (Polyamidoamines)
- Poly(ether ketone)
- Poly(ether sulfone) PES
- Poly(methyl methacrylate) also known as acrylic, acrylic glass, or plexiglass
- Poly(phenylene sulfone) PPSF or PPSU
- Polydimethylsiloxane PDMS
- Polyethylene Polythene (PE)
- Polyethylene terephthalate Poly(ethylene terephthalate) PET
- Polymer Chemistry
- Polyphenylene I
- Polyphenylene II
- Polyphenylene III
- Polypyrrole
- Polystyrene (PS)
- Polythiophene Poly(3-butyl-thiophene-2,5-diyl) PT
- Polyvinyl Chloride Poly(chloroethene) PVC
- Radical Copolymerization
Solution:
- Bisphenol A (polycarbonate)
- Kapton
- Natural Rubber
- Nylon 6,6
- PAMAM Dendrimer (Polyamidoamines)
- Poly(ether ketone)
- Poly(ether sulfone) PES
- Poly(methyl methacrylate) also known as acrylic, acrylic glass, or plexiglass
- Poly(phenylene sulfone) PPSF or PPSU
- Polydimethylsiloxane PDMS
- Polyethylene Polythene (PE)
- Polyethylene terephthalate Poly(ethylene terephthalate) PET
- Polymer Chemistry
- Polyphenylene I
- Polyphenylene II
- Polyphenylene III
- Polypyrrole
- Polystyrene (PS)
- Polythiophene Poly(3-butyl-thiophene-2,5-diyl) PT
- Polyvinyl Chloride Poly(chloroethene) PVC
- Radical Copolymerization
In [ ]: